
Send money from account to Mastercard and Visa cards and various bank account numbers.

Introduction
Intro slides
Overview
Use cases
Technical documentation

Payouts to cards

Verestro’s payout solution enables users to accomplish transfer from account to Mastercard and
VISA cards issued globally in real time or to bank account number issued by various banks. The
solution supports around 155 currencies and it’s fully secure thanks to partnership with Certified
payment institution and PCI DSS certificate. Payouts can be integrated with various acquirers,
banks, money transfer operators and others.

To use the solution, you must create an account that will represent your organization in our
system. If you want us to create such an account for you, please contact our Sales Department.
Once you have created an account for your organization, you need to integrate with our API
methods.

A detailed description of the methods necessary for integration can be found in the Technical
documentation chapter. Payout API is implemented according to the REST API model. API offers
methods that allow not only to transfer money, but also to calculate commissions, collect available
currencies for a given balance or authenticate the user and his card. Verestro team actively
supports Customer with integration.

Introduction

How to connect with us?

https://bookstack.verestro.dev/books/payouts-to-cards/page/technical-documentation
https://bookstack.verestro.dev/books/payouts-to-cards/page/technical-documentation

Payouts enable users to initiate transfers from account to Mastercard and VISA cards issued
globally in real time. Verestro in partnership with Fenige (Certified Payment Institution) can enable
it without difficult projects of Mastercard and/or VISA. Partner benefits from increase of revenues
from transactions. There is no additional financial risk for partner.

API ready to implement into existing platform of customer,
Readiness: Live,
Implementation time: 1-2 months.

image-1684242004811.png

image-1684240069246.png

image-1684240466598.png

Intro slides
Payouts

Implementation steps

Architecture

https://bookstack.verestro.dev/uploads/images/gallery/2023-05/image-1684242004811.png
https://bookstack.verestro.dev/uploads/images/gallery/2023-05/image-1684240069246.png
https://bookstack.verestro.dev/uploads/images/gallery/2023-05/image-1684240466598.png

This section provides general information about the solution, terminology description and a high-
level description of the business and technical of the Payouts solution.

Name Description

Customer Institution uses Verestro Platform. This institution decides
which product should be used and how transaction should
be processed. Basically, Customer can be called Verestro
Client.

Card Card belongs to the user. User can have many cards. Card
is identified via internal id given after storing card on
Verestro Wallet Server. Whole PAN is stored on Wallet
Server which has PCI DSS certificate.

Sender Partner’s user which triggers transaction to the Receiver
(check User description).

Receiver Entity which gets funds sent by Sender.

PCI DSS PCI DSS (Payment Card Industry Data Security Standard) is
a security standard used in environments where the data
of payment cardholders is processed. The standard covers
meticulous data processing control and protection of users
against violations.

Verestro Payouts solution was created to make it easier for customers to transfer money from
account to Mastercard and VISA cards. The picture below is presenting Payout API workflow.

image-1684240695316.png

Partner integrates with API provided by Verestro and presents new type of transfers in
internet or mobile app.
Partner signs contract with Fenige (financial institution) and user approves T&C of Fenige
during transaction sending.
Partner gets fees from user (Sender) and/or from Fenige for money transfers.
Money transfers work globally.

Overview

Terminology

Verestro Payouts

https://bookstack.verestro.dev/uploads/images/gallery/2023-05/image-1684240695316.png

End user sends money from Cryptowallet to Mastercard or VISA card.
End user can send money from micro-loan to card.
End user can initiate money transfer from wallet account to Mastercard and/or VISA card.

This are only view examples of use cases, payouts solution can be used by the partner in any way.

1. User downloads partner’s application or open website
2. User logs in using biometrical or pin authentication.
3. User goes to money transfer section and chooses transfer from bank account to card.
4. User enters amount, currency, receiver’s name and surname, and card number (16 digits).
5. User confirms data and send money.
6. User gets notification that money transfer was performed and can check details of

transfer in payment history.

image-1684239657906.png

Use cases
Example of use cases

Payouts use cases

https://bookstack.verestro.dev/uploads/images/gallery/2023-05/image-1684239657906.png

This chapter provides the instruction of the integration with the solution and with it's methods. By
using below API you will be able to order quick money transfers to debit or credit cards in 150
major currencies. Lower the costs, save time and increase the end-user satisfaction. Functionality
consists of five methods allowing to order payout, check commission and follow transfer status. All
methods are secured with Basic-Authorization of your merchant account. The Basic-Authorization will
be provided to you during the onboarding process. Prior using this solution is to open account in
acquiring institution. To complete this steps, please contact our Sales Department. We will guide
you through entire process.

Environment Test API base URL

http://payouts.verestro.dev/

Environment Production API base URL

NOT YET IMPLEMENTED

Sequence diagram presenting payout process

@startuml
skinparam ParticipantPadding 30
skinparam BoxPadding 30
skinparam noteFontColor #FFFFFF
skinparam noteBackgroundColor #1C1E3F
skinparam noteBorderColor #1C1E3F
skinparam noteBorderThickness 1
skinparam sequence {
ArrowColor #1C1E3F
ArrowFontColor #1C1E3F
ActorBorderColor #1C1E3F
ActorBackgroundColor #FFFFFF
ActorFontStyle bold
ParticipantBorderColor #1C1E3F
ParticipantBackgroundColor #1C1E3F

Technical documentation

ParticipantFontColor #FFFFFF
ParticipantFontStyle bold
LifeLineBackgroundColor #1C1E3F
LifeLineBorderColor #1C1E3F
}
actor "Payer" as p
participant "Customer" as c
participant "Verestro" as v
p->c: Make payout (provide transaction data)
c->v: Calculate commission POST /client/calculate-commission/payout
c<-v: Return commission
p<-c: Show commission
p->c: Confirm
c->v: Order payout with transaction data POST /api/v2/client/send-money
v->v: Contact with acquiring institution for transaction to be processed
v->c: Return transaction order-Id with status
p<-c: Payout ordered
v-->c: (optional) Send webhook
c->v: (optional) Check transaction status GET /client/send-money/{order-Id}
v->c: Return http status and proper message
@enduml

Important: The success of the multicurrency send-money transaction depends primarily on
the correctness of your currency configuration which is done by the Acquirer. To make
transactions in a currency other than the currency of the card, contact the Verestro
employee.

Important: From January 2021, there is an internal functionality to restrict access for the
Customer to specific method. The Acquirer employee can disable access to a given endpoint,
then the HTTP status 403 FORBIDDEN will be returned. You will be informed about each
access restriction action.

Note: When performing authorization, remember that there are currencies with different
number of decimal places. For example: VND has no pennies and KWD has three decimal
places. Please take this into account in the Amout field. For more information on other
currencies, see ISO 4217.

Order payout

The method allows you to order a payout transfer. The request can be made in four forms
depending on the type of reference indicating the receiver of the funds. Customer by selecting
amount = X defines amount of payment in given currency. This amount is transferred to receiver
payment instrument (receiver reference) in selected currency. In case there's need revaluation
from one currency to another, system uses higherRate for this situation. For more details about
specific rates please refer to currencyRate method.

Receiver reference Description

CASH-PLAIN Sender provides receiver's card number in plain text.

CASH-PLAIN-WITH-CALCULATE-COMMISSION-RESULT Sender provides receiver's card number in plain text along
with earlier calculated commission with
calculateCommissionPayout .

POST /api/v2/client/send-money

CASH-PLAIN

Headers

Key Value

Content-Type application/vnd.sendmoney.v2+json

Basic-Authorization Basic dXNlcm5hbWU6cGFzc3dvcmQ=

Example request body in JSON format

{
 "amount" : 1000,
 "type" : "RECEIVER",
 "requestId" : "9d7cead6-3532-4028-94ef-666f426f7f74",
 "transactionId" : "TRX220132AM",
 "sender" : {
 "type" : "CASH",
 "firstName" : "Mark",

Note: The Basic-Authorization will be provided to you during the onboarding process.

https://bookstack.verestro.dev/books/payouts/page/technical-documentation-draft#bkmrk-currency-rate
https://bookstack.verestro.dev/books/payouts/page/technical-documentation#bkmrk-calculate-commission

 "lastName" : "Smith",
 "street" : "Olszewskiego",
 "houseNumber" : "17A",
 "city" : "Lublin",
 "postalCode" : "20-400",
 "flatNumber" : "2",
 "email" : "senderEmail@verestro.com",
 "personalId" : "AGC688910",
 "country" : "PL"
 },
 "receiver" : {
 "type" : "PLAIN",
 "firstName" : "Rob",
 "lastName" : "Wring",
 "birthDate" : "2024-03-19",
 "cardNumber" : "5117964247989169",
 "currency" : "PLN",
 "countryOfResidence" : "PL"
 }
}

Parameter Type Description

amount number
required

The total transfer amount (in
pennies).

type string
required

Transaction in SENDER or
RECEIVER currency, for specific

transaction type. CARD_CARD :
above, CASH_CARD : RECEIVER ,
CASH_CARD : SENDER .

requestId string
required

UUID generated by the the client,
used to identify single transaction.
Ensures that the transaction with
the given parameter is processed
only once.

transactionId string required UUID generated by the the client
to assign transaction identifier.

sender object required Object containing datailed payer's
data.

sender.type string required For this configuration the value of
this field must be CASH , otherwise
request will be declined.

sender.firstName string required Payers's first name.

sender.lastName string required Payers's last name.

sender.street string required Payer's address.

sender.houseNumber string required Payer's house number.

sender.city string required Payer's city.

sender.postalCode string required Payer's postal code.

sender.flatNumber string required Payer's flat number.

sender.personalId string Payer's personal id.

sender.country string required Country code in accordance with
ISO 3166-1 Alpha-2. Is required for
terminal crypto

receiver object required Object containing datailed
receiver's data.

receiver.type string required For this configuration the value of
this field must be PLAIN , otherwise
request will be declined.

receiver.firstName string required Receiver's first name.

receiver.lastName string required Receiver's last name.

receiver.birthDate string required Receiver's birth day.

receiver.cardNumber string required Receiver's card number PAN.

receiver.currency string required Currency for transaction. For
example: PLN.

receiver.countryOfResidence string Country code in accordance with
ISO 3166-1 Alpha-2. Is required for
terminal crypto

CASH-PLAIN-WITH-CALCULATE-COMMISSION-RESULT

Headers

Key Value

Content-Type application/vnd.sendmoney.v2+json

Basic-Authorization Basic dXNlcm5hbWU6cGFzc3dvcmQ=

Example request body in JSON format

{
 "calculateCommissionUuid" : "58e1fc52-dab0-46a2-9198-45eb34024c83",
 "amount" : 1000,
 "type" : "RECEIVER",

Note: The Basic-Authorization will be provided to you during the onboarding process.

 "requestId" : "2b76bfd8-cfe5-4858-a145-eaed73b8cd9c",
 "transactionId" : "TRX220132AM",
 "sender" : {
 "type" : "CASH",
 "firstName" : "Mark",
 "lastName" : "Smith",
 "street" : "Olszewskiego",
 "houseNumber" : "17A",
 "city" : "Lublin",
 "postalCode" : "20-400",
 "flatNumber" : "2",
 "email" : "senderEmail@verestro.com",
 "personalId" : "AGC688910",
 "country" : "PL"
 },
 "receiver" : {
 "type" : "PLAIN",
 "firstName" : "Rob",
 "lastName" : "Wring",
 "birthDate" : "2024-03-19",
 "cardNumber" : "5117964247989169",
 "currency" : "PLN",
 "countryOfResidence" : "PL"
 }
}

Parameter Type Description

amount number
required

The total transfer amount (in
pennies).

type string
required

Transaction in SENDER or
RECEIVER currency, for specific

transaction type. CARD_CARD :
above, CASH_CARD : RECEIVER ,
CASH_CARD : SENDER .

requestId string
required

UUID generated by the the client,
used to identify single transaction.
Ensures that the transaction with
the given parameter is processed
only once.

transactionId string required UUID generated by the the client
to assign transaction identifier.

calculateCommissionUuid string Unique calculateCommission result
identifier that allows to use
calculated commission in
transaction.

sender object required Object containing datailed payer's
data.

sender.type string required For this configuration the value of
this field must be CASH , otherwise
request will be declined.

sender.firstName string required Payers's first name.

sender.lastName string required Payers's last name.

sender.street string required Payer's address.

sender.houseNumber string required Payer's house number.

sender.city string required Payer's city.

sender.postalCode string required Payer's postal code.

sender.flatNumber string required Payer's flat number.

sender.personalId string required Payer's personal id.

sender.country string required Payer's country.

receiver object required Object containing datailed
receiver's data.

receiver.type string required For this configuration the value of
this field must be PLAIN , otherwise
request will be declined.

https://bookstack.verestro.dev/books/payouts/page/technical-documentation-draft#bkmrk-calculate-commission

receiver.firstName string required Receiver's first name.

receiver.lastName string required Receiver's last name.

receiver.birthDate string required Receiver's birth day.

receiver.cardNumber string required Receiver's card number PAN.

receiver.currency string required Currency for transaction. For
example: PLN.

receiver.countryOfResidence string Country code in accordance with
ISO 3166-1 Alpha-2. Is required for
terminal crypto

Example response body in JSON format - 202 - Accepted

Parameter Type Description

orderId string($uuid) The unique identifier of
transaction.

HTTP/1.1 202 Accepted
Content-Type: application/json
Content-Length: 56

{
 "orderId" : "0621091f-a35a-4e91-a6bf-1f753304ae83"
}

Possible errors

Errors that may occur when attempting to transfer performing:

400 - Bad request

HTTP/1.1 400 Bad Request
Content-Type: application/json
Content-Length: 104

{
 "error" : {
 "message" : "Another transaction with the same id has already been processed."
 }
}

401 - Unauthorized

HTTP/1.1 401 Unauthorized
Content-Type: application/json

{
 "timestamp": "2021-12-22T12:39:53.168+0000",
 "status": 401,
 "error": "Unauthorized",
 "message": "ERROR_USER_NOTFOUND",
 "path": "/api/v2/client/send-money"
}

200 OK - Error validation

HTTP/1.1 200 OK
Content-Type: application/json;charset=ISO-8859-1

{
	"status": "ERROR_VALIDATION",
	"error": {
		"message": "Some information is missing or incorrect.",

		"errors": [{
				"field": "requestId",
				"message": [
					"may not be null"
]
			}
			{
				"field": "type",
				"message": [
					"may not be null"
]
			},
			{
				"field": "amount",
				"message": [
					"may not be null"
]
			}
]
	}
}

403 - Forbidden

HTTP/1.1 403 Forbidden
Content-Type: application/json

{
 "timestamp": 1610464313387,
 "status": 403,
 "error": "Forbidden",
 "message": "No message available",
 "path": "/client/send-money-3ds"
}

This method is used to receive information about the commission that will be charged for the
transaction. You have to specify in the field: type two values (SENDER or RECEIVER). For Payouts
the value must be RECEIVER . The method allows you to calculate commissions for the currencies
that have been entered. Result of this method can be used in transaction by passing
calculateCommissionUuid from the response.

POST /client/calculate-commission/payout

Headers

Key Value

Content-Type application/json

Basic-Authorization Basic dXNlcm5hbWU6cGFzc3dvcmQ=

Example request body in JSON format

Parameter Type Description

amount number
required

The total transfer amount (in
pennies)

{
 "amount" : 100,
 "type" : "RECEIVER",
 "sender" : {
 "type" : "CASH"
 },
 "receiver" : {
 "type" : "PLAIN",
 "cardNumber" : "5575167825713507",
 "currency" : "PLN"
 }
}

Calculate commission payout

type string
required

Value for specific transaction type.
Must be RECEIVER .

sender object
required

Object containing detailed payer's
data.

sender.type string
required

Required configuration per
request. Must be CASH type.

receiver object required Object containing detailed
receiver's data.

receiver.type string
required

For this configuration the value of
this field must be PLAIN ,
otherwise request will be declined.

receiver.cardNumber string
required

Receiver's card number PAN.

receiver.currency string
required

Currency for transaction. For
example: PLN.

Example response body in JSON format - 200 - OK

Parameter Type Description

calculateCommissionUuid string Unique identifier that can be used
in authorization to use calculate
commission result.

HTTP/1.1 200 OK
Content-Type: application/json
Content-Length: 186

{
 "calculateCommissionUuid" : "6d43d706-570e-47bd-be48-976c0c9b23b8",
 "depositChargeAmount" : 200,
 "depositChargeCurrency" : "PLN",
 "calculateCommissionExpiration" : 1710893068
}

depositChargeAmount number Amount that will be charged from
deposit in pennies

depositChargeCurrency string Deposit currency

calculateCommissionExpiration number Expiration date of calculate
commission result in unix time

Possible errors

422 - Unprocessable entity

HTTP/1.1 422 Unprocessable Entity
Content-Type: application/json
Content-Length: 184

{
 "status" : "E0152",
 "message" : "Transaction rejected, issuer card not supported",
 "httpStatus" : "UNPROCESSABLE_ENTITY",
 "traceId" : "483ba538-ff94-41eb-b54d-34d1a6336ddb"
}

500 - Internal server error

HTTP/1.1 500 Internal Server Error
Content-Type: application/json
Content-Length: 150

{
 "status" : "E9000",
 "message" : "Domain error",
 "httpStatus" : "INTERNAL_SERVER_ERROR",
 "traceId" : "edeb0c72-2b63-4be4-81d3-a5a878609726"
}

This method is used for determine currency rate for revaluation from funding to payment (
lowerRate) and payment to funding (higherRate). Notice that lowerRate is used to transaction
processing.

POST /client/currency-rate

Headers

Key Value

Content-Type application/json

Basic-Authorization Basic dXNlcm5hbWU6cGFzc3dvcmQ=

Example request body in JSON format

Parameter Type Description

{
 "provider" : "MASTERCARD",
 "from" : "USD",
 "to" : "PLN",
 "effectiveDate" : "2017-06-05 12:00:00"
}

Currency rate by provider

Tip: Payout API allows users to select the direction of revaluation by providing specify type
value in orderPayout request. User by selecting type = SENDER defines amount of funding in
given currency. This amount is collected from sender card in selected currency. In case
there's need revaluation from one currency to another, system uses lowerRate .

https://bookstack.verestro.dev/books/payouts-to-cards/page/technical-documentation#bkmrk-%C2%A0-0

provider string required VISA or MASTERCARD or MAESTRO.

from string
required

Source revaluation currency.

to string
required

Destination revaluation currency.

effectiveDate string Date from which the currency rate
is needed. This is optional field.
When there is no effectiveDate
field, then currency rate is getting
from request date. (Format "yyyy-
MM-ddHH:mm:ss")

Example response body in JSON format - 200 - OK

Parameter Type Description

status string Status of the revaluation.

success object Rate for revaluation.

success.lowerRate decimal Rate for revaluation from funding
to payment

success.higherRate decimal Rate for revaluation from payment
to funding

HTTP/1.1 200 OK
Content-Type: application/json
Content-Length: 104

{
 "status" : "SUCCESS",
 "success" : {
 "lowerRate" : 3.735908,
 "higherRate" : 3.8522295
 }
}

Possible errors

200 - OK

HTTP/1.1 200 OK
Content-Type: application/json;charset=UTF-8

{
 "status": "CURRENCY_INVALID",
 "error": {
 "message": "Invalid currency."
 }
}

HTTP/1.1 200 OK
Content-Type: application/json;charset=UTF-8

{
 "status": "CURRENCY_RATES_INVALID",
 "error": {
 "message": "Invalid currency rates."
 }
}

HTTP/1.1 200 OK
Content-Type: application/json;charset=UTF-8

{
 "status": "ERROR_VALIDATION",
 "error": {
 "message": "Some information is missing or incorrect.",
 "errors": [
 {
 "field": "sender.currency",
 "message": [

 "Currency is not supported"
]
 },
 {
 "field": "receiver.currency",
 "message": [
 "Currency is not supported"
]
 }
]
 }
}

The method allows to get a status of multi-currency transfer providing transfer order id in the
method's URL address. Parameter order id was returned in the response of the orderPayout method.

GET /client/send-money/details/{orderId}

Headers

Key Value

Content-Type application/json

Basic-Authorization Basic dXNlcm5hbWU6cGFzc3dvcmQ=

Query parameter Value

orderId <UUID of the ordered transfer>

Example response body in JSON format - 200 - OK

Check status

https://bookstack.verestro.dev/books/payouts/page/technical-documentation#bkmrk-%C2%A0-0

{
 "transactionId" : "TRX220132AM",
 "amount" : 1000,
 "amountInUsDollar" : 268,
 "bigDecimalAmount" : 10.0,
 "commission" : 200,
 "bigDecimalCommission" : 2.0,
 "orderId" : "00549d98-08cb-45d2-8673-4dcafa81f498",
 "createdDate" : "03-04-2018, 14:01",
 "fundingRrn" : "014011103023",
 "paymentRrn" : "014011103024",
 "arn" : "05411640143500000019325",
 "3DS" : true,
 "revaluationResult" : {
 "revaluationFundingAmount" : 1000,
 "bigDecimalRevaluationFundingAmount" : 10.0,
 "fundingCurrency" : "PLN",
 "revaluationPaymentAmount" : 1000,
 "bigDecimalRevaluationPaymentAmount" : 10.0,
 "paymentCurrency" : "PLN",
 "determineCurrencyRate" : {
 "from" : "PLN",
 "to" : "PLN",
 "currencyRate" : "1"
 }
 },
 "receiver" : {
 "firstName" : "John",
 "lastName" : "Novak",
 "provider" : "MASTERCARD",
 "hiddenCardNumber" : "557455******1623",
 "bankName" : "Alior Bank SA"
 },
 "sender" : {
 "firstName" : "Caroline",
 "lastName" : "Novak",
 "provider" : "MASTERCARD",
 "hiddenCardNumber" : "511796******9169",

Response parameters

Parameter Type Description

amount number Amount of the transferred cash of
the currency in pennies [1PLN =
100].

amountInUsDollar number Amount of the transferred cash in
pennies in USD currency [1PLN =
100].

bigDecimalAmount number Amount of the transferred cash
with decimal precision.

commission number Amount of the commission added
to the ordered transfer in pennies
[1PLN = 100]

bigDecimalCommission number Amount of the commission added
to the ordered transfer with
decimal precision.

orderId string Unique transaction identifier.

transactionId string This parameter is used to send you
your own internal transaction
identifier. This field is also sent by
the webhook method.

createdDate string Date of transaction order.

fundingRrn string Funding retrieval reference
number.

paymentRrn string Payment retrieval reference
number.

arn string Acquirering institution reference
number.

3DS boolean The value: true / false informs
whether 3DS was performed or
not.

 "bankName" : "Alior Bank SA"
 }
}

https://bookstack.verestro.dev/books/payouts/page/technical-documentation#bkmrk-webhook

revaluationResult object Detailed information about
revaluation between sender
currency and receiver currency.

revaluationResult.revaluationFundingAmo
unt

number Amount of the funding transaction
in fundingCurrency in pennies [1PLN
= 100].

revaluationResult.bigDecimalRevaluation
FundingAmount

number Amount of the funding transaction
in decimal precision.

revaluationResult.fundingCurrency string Currency code the same as
sender’s card currency.

revaluationResult.revaluationPaymentAm
ount

number Amount of the payment
transaction in paymentCurrency in
pennies [1PLN = 100].

revaluationResult.bigDecimalRevaluation
PaymentAmount

number Amount of the payment
transaction in decimal precision.

revaluationResult.paymentCurrency string Currency code the same as
receivers's card currency.

revaluationResult.determineCurrencyRate object Details about currency conversion.

revaluationResult.determineCurrencyRate
.from

number Currency coverted "from".

revaluationResult.determineCurrencyRate
.to

number Result of the conversion.

revaluationResult.determineCurrencyRate
.currencyRate

number Currency rate.

Possible errors

203 - Non-authoritative information

Important! After you get 203 and if you don’t get a response (200 - succeeded
or 500 - declined) within 60 seconds then please contact us.

HTTP/1.1 203 Non-Authoritative Information

401 - Unauthorized

{
 "timestamp": "2023-03-29T19:16:01.288+00:00",
 "status": 401,
 "error": "Unauthorized",
 "path": "/api/v1/transactions/9609a08e-cd80-4e6e-8664-f1e6b2f2dc50"
}

404 - Not found

HTTP/1.1 404 Not Found
Content-Type: application/json
Content-Length: 51

{
 "errorStatus" : "ERROR_TRANSACTION_NOT_FOUND"
}

422 - Unprocessable entity

HTTP/1.1 422 Unprocessable Entity
Content-Type: application/json
Content-Length: 1287

{
 "transactionId" : "TRX220132AM",
 "amount" : 1000,
 "amountInUsDollar" : 268,
 "bigDecimalAmount" : 10.0,
 "commission" : 200,
 "bigDecimalCommission" : 2.0,
 "orderId" : "00549d98-08cb-45d2-8673-4dcafa81f498",
 "createdDate" : "03-04-2018, 14:01",

 "fundingRrn" : "014011103023",
 "paymentRrn" : "014011103024",
 "arn" : "05411640143500000019325",
 "3DS" : true,
 "revaluationResult" : {
 "revaluationFundingAmount" : 1000,
 "bigDecimalRevaluationFundingAmount" : 10.0,
 "fundingCurrency" : "PLN",
 "revaluationPaymentAmount" : 1000,
 "bigDecimalRevaluationPaymentAmount" : 10.0,
 "paymentCurrency" : "PLN",
 "determineCurrencyRate" : {
 "from" : "PLN",
 "to" : "PLN",
 "currencyRate" : "1"
 }
 },
 "receiver" : {
 "firstName" : "John",
 "lastName" : "Novak",
 "provider" : "MASTERCARD",
 "hiddenCardNumber" : "557455******1623",
 "bankName" : "Alior Bank SA"
 },
 "sender" : {
 "firstName" : "Caroline",
 "lastName" : "Novak",
 "provider" : "MASTERCARD",
 "hiddenCardNumber" : "511796******9169",
 "bankName" : "Alior Bank SA"
 },
 "transactionStatus" : "DECLINED",
 "cardBlockType" : "TEMP",
 "cardBlockedUntil" : "2024-03-21T01:04:17.573",
 "errorStatus" : "ERROR_SENDER_CARD_IS_BLOCKED"
}

422 - Unprocessable entity CASH-CARD

HTTP/1.1 422 Unprocessable Entity
Content-Type: application/json
Content-Length: 1358

{
 "transactionId" : "TRX220132AM",
 "amount" : 1000,
 "amountInUsDollar" : 268,
 "bigDecimalAmount" : 10.0,
 "commission" : 200,
 "bigDecimalCommission" : 2.0,
 "orderId" : "00549d98-08cb-45d2-8673-4dcafa81f498",
 "createdDate" : "03-04-2018, 14:01",
 "fundingRrn" : "014011103023",
 "paymentRrn" : "014011103024",
 "arn" : "05411640143500000019325",
 "3DS" : false,
 "revaluationResult" : {
 "revaluationFundingAmount" : 1000,
 "bigDecimalRevaluationFundingAmount" : 10.0,
 "fundingCurrency" : "PLN",
 "revaluationPaymentAmount" : 1000,
 "bigDecimalRevaluationPaymentAmount" : 10.0,
 "paymentCurrency" : "PLN",
 "determineCurrencyRate" : {
 "from" : "PLN",
 "to" : "PLN",
 "currencyRate" : "1"
 }
 },
 "receiver" : {
 "firstName" : "John",
 "lastName" : "Novak",
 "provider" : "MASTERCARD",

 "hiddenCardNumber" : "557455******1623",
 "bankName" : "Alior Bank SA"
 },
 "sender" : {
 "firstName" : "Caroline",
 "lastName" : "Novak",
 "provider" : "CASH"
 },
 "transactionStatus" : "DECLINED",
 "merchantSettlementCurrency" : "USD",
 "fenigeCommissionInMerchantSettlementCurrency" : 0.05,
 "transactionAmountInMerchantSettlementCurrency" : 2.68,
 "cardBlockType" : "TEMP",
 "cardBlockedUntil" : "2024-03-21T01:04:18.165",
 "errorStatus" : "ERROR_SENDER_CARD_IS_BLOCKED"
}

500 - Internal server error

HTTP/1.1 500 Internal Server Error
Content-Type: text/plain;charset=ISO-8859-1

PAYMENT_TRANSACTION_DECLINED:CODE_05

This method allow you to receive notification after the ordered transaction. After handling the
request from Verestro system, you will be notified of the current status of the transaction. Then
you can be sure that the transaction processing was finished and you can get the transaction
details if you want to. This functionality is optional and it is not required to use Payout solution.

Webhook

Note: To use the webhooks functionality, please notify Verestro Sales Department. After
that we will configure URL address and a secret token which you will be using to
communicate with webhook service. Please notice you must specify the URL - webhook will

Sequence diagram presenting webhook process

@startuml
skinparam ParticipantPadding 30
skinparam BoxPadding 30
skinparam noteFontColor #FFFFFF
skinparam noteBackgroundColor #1C1E3F
skinparam noteBorderColor #1C1E3F
skinparam noteBorderThickness 1
skinparam sequence {
ArrowColor #1C1E3F
ArrowFontColor #1C1E3F
ActorBorderColor #1C1E3F
ActorBackgroundColor #FFFFFF
ActorFontStyle bold
ParticipantBorderColor #1C1E3F
ParticipantBackgroundColor #1C1E3F
ParticipantFontColor #FFFFFF
ParticipantFontStyle bold
LifeLineBackgroundColor #1C1E3F
LifeLineBorderColor #1C1E3F
}
participant "Customer" as c
participant "Verestro" as v
c->v: Transaction request
c<-v: Response
v->v: Transaction processing...
v->c: Transaction processing finnished callback (webhook)
c->v: Response HTTP Status 200 OK
@enduml

You must return HTTP status 200 OK after receiving webhook. Otherwise our server will retry the
request. There are 3 attemps of requesting webhook. Every repeat is executed with 5 seconds
interval excluding timeout from your server.

be sent to this address. The secret token will be generated by the Verestro employee and
sent to the client.

Tip: In order to protect client API by polling or other undesirable actions, the webhook
service uses headers. If you want to use get webhook notification, you need to handle
required headers on your side.

Example of X-MERCHANT-SECRET building

import hashlib

secret token established by client with verestro's employee
secret = 'mNaU9TaK4m9myYYFBJgKu8slNH2fCKutJyzXwI'

orderId received from webhook's request
order_id = 'c168a885-acfa-4a91-a1ad-ed7a042b7238'

concatenate strings in correct order
concatenated = secret + order_id

use SHA256 hashing function
hashed = hashlib.sha256(concatenated.encode('utf-8')).hexdigest()

then compare 'hashed' variable with content of 'X-MERCHANT-SECRET' header

There are three possible states of the webhook: TRANSACTION_APPROVED , TRANSACTION_DECLINED or
TRANSACTION_REVERSED . Each of the webhooks is presented below:

Headers

Key Description

X-MERCHANT-SECRET SHA256 Hash string composed from secret token and
orderId placed in request body of this webhook

X-MERCHANT-TIMESTAMP Timestamp of server response in UNIX format for instance:
1614023731

TRANSACTION_APPROVED

Content-Type: application/json
X-MERCHANT-SECRET: 3cbd17f561150a1394cabbe2b6031fd83f3f3081abe28c32b7fed16f32aebc4a

Tip: To build X-MERCHANT-SECRET header:
1. Concatenate secret token established by you and Verestro's employee with orderId of
transaction
2. Hash with SHA256 function result of above operation

X-MERCHANT-TIMESTAMP: 1614800720
{
 "orderId": "c168a885-acfa-4a91-a1ad-ed7a042b7238",
 "transactionId": "TRX220132AM",
 "status": "APPROVED",
 "responseCode": "CODE_00",
 "amount": 900,
 "amountCurrency": "PLN",
 "amountInUsDollar": 248,
 "revaluationResult": {
 "revaluationFundingAmount": 900,
 "bigDecimalRevaluationFundingAmount": 9,
 "fundingCurrency": "PLN",
 "revaluationPaymentAmount": 900,
 "bigDecimalRevaluationPaymentAmount": 9,
 "paymentCurrency": "PLN",
 "determineCurrencyRate": {
 "from": "PLN",
 "to": "PLN",
 "currencyRate": "1"
 }
 },
 "commissionAmount": 46,
 "commissionCurrency": "PLN"
}

TRANSACTION_DECLINED

Content-Type: application/json
X-MERCHANT-SECRET: 3cbd17f561150a1394cabbe2b6031fd83f3f3081abe28c32b7fed16f32aebc4a
X-MERCHANT-TIMESTAMP: 1614800720

{
 "orderId": "42e8a03a-eb2e-4208-b99b-ac2ad6308498",
 "transactionId": "TRX220132AM",
 "status": "DECLINED",
 "responseCode": "CODE_05",
 "errorMessage": "FUNDING_TRANSACTION_DECLINED:CODE_05",

 "amount": 900,
 "amountCurrency": "PLN",
 "amountInUsDollar": 248,
 "revaluationResult": {
 "revaluationFundingAmount": 900,
 "bigDecimalRevaluationFundingAmount": 9,
 "fundingCurrency": "PLN",
 "revaluationPaymentAmount": 900,
 "bigDecimalRevaluationPaymentAmount": 9,
 "paymentCurrency": "PLN",
 "determineCurrencyRate": {
 "from": "PLN",
 "to": "PLN",
 "currencyRate": "1"
 }
 },
 "commissionAmount": 46,
 "commissionCurrency": "PLN",
 "merchantAdviceCode": "03 - Do not try again"
}

TRANSACTION_REVERSED

Content-Type: application/json
X-MERCHANT-SECRET: 3cbd17f561150a1394cabbe2b6031fd83f3f3081abe28c32b7fed16f32aebc4a
X-MERCHANT-TIMESTAMP: 1614800720

{
 "orderId": "1b498361-f8db-406e-943b-ca2b12b7aa38",
 "transactionId": "TRX220132AM",
 "status": "REVERSED",
 "responseCode": "CODE_00",
 "amount": 1000,
 "amountCurrency": "PLN",
 "amountInUsDollar": 273,
 "revaluationResult": {
 "revaluationFundingAmount": 1000,

 "bigDecimalRevaluationFundingAmount": 10,
 "fundingCurrency": "PLN",
 "revaluationPaymentAmount": 262,
 "bigDecimalRevaluationPaymentAmount": 2.62,
 "paymentCurrency": "USD",
 "determineCurrencyRate": {
 "from": "PLN",
 "to": "USD",
 "currencyRate": "0.2616157"
 }
 },
 "commissionAmount": 1,
 "commissionCurrency": "PLN"
}

