
Show and scan QR. Use as merchant or consumer.

Introduction
Overview
Use cases

QR Payments



Show and scan QR. Register as merchant and user. Enable card acceptance immediately.

The QR Payments solution was created to enable both merchants and individuals to generate and
scan QR codes to perform transactions. Verestro supports the global QR standard and has its own
QR standard which is an extension of the global standard. This functionality allows the user to
generate his own QR code. Having generated QR code, users can order the execution of a
transaction by sharing the code to the potential payer. Functionality also allows users to make a
transfer by scanning the QR code shared by the potential recipient of the transfer. The scanned QR
must support the global QR standard or the Verestro standard.

QR code payments can be used by issuers, fintech providers, merchants, individual consumers for
various use cases starting from Person-2-Person transactions, through SME merchant payments to
sophisticated use cases for digital, TV or advertisement payments.

QR Payments is a solution developed on Android and iOS. Integration of the solution is available
through the mobile QR SDK offered by Verestro. Integration through Verestro SDK, requires an
account at Verestro Artifactory. To create such account, please contact the Customer Service.

Verestro provides Software Development Kit (SDK) which can be used for QR generating, QR
scanning, encoding data into the QR code and decode data from the QR code. Verestro team
actively supports Customer with integration. More information about each module in Mobile SDK
can be found in iOS QR SDK Documentation for iOS implementation and Android QR SDK
Documentation for Android implementation.

Introduction

How to connect with us?

Mobile SDK

https://cheerful-cajeta-2034e2.netlify.app/documentation/
https://wiki.verestro.com/display/P2P/Android+QR
https://wiki.verestro.com/display/P2P/Android+QR


This section provides general information about the solution, terminology description and a high-
level description of the business and technical aspects.

Abbreviations and Acronyms used in the document:

Abbreviations Description

ACQ Acquiring Institution/Acquirer

AP Admin Panel

ACS Access Control Server

C2C Card to card

DC Data Core API

P2P Peer to peer API

MDC Mobile Data Core API

SDK Software Development Kit

THC Transaction History Core

OS Operative System

URI Uniform Resource Identifier

Mid Merchant Identifier

Overview

Abberations and Acronyms

Terminology



This section explains a number of key terms and concepts used in this document:

Name Description

Customer Institution which is using Verestro products. This institution
decides which SDK should be used and how transaction
should be processed. Basicly Customer can be called
Verestro client.

User User which is using Money Transfer Hub Application. It is
root of entity tree. User is identified in Wallet Server by
some unique identifier which is provided after registration.
User can have access to his data and operations based on
session. User’s session is created after device pairing is
performed. When session expires then user authentication
have to be performed. Session is valid 10 minutes,
however it is configurable parameter.

Card Card belongs to the user. User can have many cards. Card
is identified via internal id given after storing card on
Wallet Server. Whole PAN is stored on Wallet Server which
has PCI DSS certificate.

Device Device belongs to user. When user starts using application
after installation then device pairing is performed. After
pairing device with some unique id, unique device
installation id is generated and this installation is assigned
to user. It is possible to have one active installation on
specific device for specific user.

Session Token Token which defines User. It is an authorization way of the
User.  This entity is created after paring device and this is
needed to perform any actions in the application. When
session is expired then user authentication needs to be
performed. Session is valid 10 minute s, however it is
configurable parameter.

Sender Verestro Wallet user which triggers transaction to the
Receiver (check User description).

Receiver Receiver can be identified in Wallet Server (Internal) or
may be an entity that does not exist in Wallet Server
(External)
◦     Internal – this type of Receiver has his own unique
identifier just like sender. It can also act as a Sender in the
transaction process,
◦    External – this type of Receiver does not exist in Wallet
Server. Transfers that are made to this type of Receiver
require the entering of his card data by Sender.

Mid Merchant identifier. This entity is representing Merchant in
Acquirer’s system. Customer have to provide the mid
information to enable mid configuration in the Verestro
system. Required to process 3DS authentication via
Verestro System.



Acquirer External institution responsible for processing transaction
and 3ds requests ordered by the Verestro Money Transfer
Hub Application. Acquirer connects with banks / card
issuers and returns information whether the ordered action
on a given card is possible.

PAN It is 7-15 digits of credit card number. These digits contain
the Permanent Account Number (PAN) assigned by the
bank to uniquely identify the account holder.

Wallet Server Provides the backend services to support Mobile Payment
Application via Verestro Wallet SDK and is responsible for
managing users, devices, cards , device tokens, storing
transactions history and communication with Acquirers.

PCI DSS PCI DSS (Payment Card Industry Data Security Standard) is
a security standard used in environments where the data
of payment cardholders is processed. The standard covers
meticulous data processing control and protection of users
against violations.

QR QR code is a type of barcode or scannable pattern that
contains various forms of data like website links, account
information, phone numbers, or even entire object of the
transaction. 

QR Transaction is a technology which enables to perform transaction by QR code. This functionality
allows to initialize payment by showing QR by Merchant/Receiver to the Sender, which scans it, and
pays using Verestro application. The QR code is generated in accordance with the global standard,
however, depending on the customer's needs, it can be extended as long as the standard is
maintained. This solution requires the 3DS Authentication method, which is described later in the
document and it is an individual requirement depending on the Settlement Agent.

The MC Send 2.0 solution also provides the ability to perform transactions using a QR code -
Mastercard QR. However the customer must be integrated with Verestro Money Transfer and
Mastercard Send 2.0 to be able to use the MCQR solution.

The MCQR solution offers some features such as:

crossboarded transfers,
the possibility of issuing a QR for the customer’s clients,
compliance with the global QR standard.

This diagram shows high level components which are involved in whole solution:

QR Transactions

QR Transactions high level overview



Component Description

Verestro Wallet Server Backend services of Money Transfer solution. In the
described product, they are responsible handling data
provided from QR code. On the basis of such data, the
backend enables the execution of transactions and 3ds
authentication by connecting to various Acquirers.

Verestro QR Wallet SDK Provides all functionalities needed for Money Transfer Hub
Solution with QR transfers. It is responsible for generate
QR, parsing data embedded in it and deliver necessary
data to pass all Verestro Wallet Server functionalities.

Notification Service Delivers all necessary information about transaction
statuses and other actions which was performed between
individual Verestro backend components and/or external.

QR Transaction Key Components

https://bookstack.verestro.dev/uploads/images/gallery/2022-07/image-1658904392431.png


Admin Panel Frontend component that allows Customer to check
transaction statuses and transaction history of his clients.

Verestro Payment QR Hub is a solution that was created to provide possibility of QR generating and
scanning via application. Verestro QR Money Transfer Hub provides functionalities for making
transfers based on the data contained in QR codes.

Solution consists of:

Server components:
Wallet Server – backend component,
Wallet Admin Panel – frontend component,

Mobile components:
Wallet SDK – Android / iOS libs.

 Money Transfer Hub Solution supports one type of wallet which can be used in the
implementation:

OPEN - user registers itself in the application and provides data like PAN etc.

Note that the User can provide generated QR to external entites.

Verestro provides QR in Software-and-a-Service model hosting the solution for customer. Verestro
provides Wallet SDK and Wallet Server. Customer is responsible for integration of provided SDK
with his own application and user authentication management (based on MDC SDK). 

Verestro can also provide QR payments inside its White Label Application. In this model full
implementation process is on Verestro side and project can be launch quickly.

This diagram shows big picture of Verestro Money Transfer Hub architecture:

Verestro QR Money Transfer Hub

Wallet Types

Implementation models

Architecture



Server components are backend services which are designed to process requests from the mobile
part, provide the necessary information such as user ID and communicate with Acquirers.

In QR Money Transfer Hub Solution Server components are deployed and configured on Verestro
side. Verestro is responsible for maintaining infrastructure, deploying applications and monitoring.

Server Components

Deployment Models

Wallet Server

https://bookstack.verestro.dev/uploads/images/gallery/2022-07/image-1658908745624.png


Wallet Server is the backend component which consists of few internal services which are
responsible for managing users, cards, security tokens, QR payments and transaction history. This
component is also responsible for connection with Acquirers. Services included in the Wallet
Server. For more detailed information about Wallet Server component please see Money Transfer

documentation.

Wallet Server operates with domain objects like:

User (Sender) - User which is using QR Money Transfer Hub,
Session Token – Token which defines User. It is an authorization way of the User,
Device – This entity is created after user registration and is required to login the User,
Card - User Card which can be charged or recharged,
Receiver - Verestro Wallet user or external entity which receives funds from the Sender.

Mobile components are dedicated to handle the QR solution on the Android and iOS.

QR SDK is responsible for creating the appropriate QR code, parse it and for transferring the data
contained in this code. Based on such data, a transaction will be initiated.

 Below is a detailed list of SDKs included in Mobile Components:

P2P Transfers SDK - supports the process of generating and reporting transactions. The
share of this module in the application takes its payment functions to a higher level,
enabling the initiation of transfers to a card, telephone number or QR code (for more
technical information please check “P2P Transfer SDK documentation”).
QR SDK - The QR module was designed to work with the applicable MPQR (Merchant
Presented QR) standard developed by EMV. Thanks to the integration of this module with
P2P and meeting the requirements of Mastercard, the user will be able to pay with sellers
using QR codes. An additional functionality is that the user can use the code generated for
his card and thus receive funds from other people within one implementation (for more
technical information please check “QR SDK documentation”).

 The account at Verestro Artifactory is required to get access to Verestro repository.

SDK version contains three numbers. For example: 1.0.0.:
(For more information check what is “Semantic Versioning” standrand)

Mobile Components

Wallet SDK

Access

Versioning

https://bookstack.verestro.dev/books/money-transfers/page/money-transfers-overview
https://bookstack.verestro.dev/books/money-transfers/page/money-transfers-overview


First version digit tracks compatibility-breaking changes in SDK public APIs. It is
mandatory to update application code, to use SDK, when this is incremented.
Second version digit tracks new, not compatibility-breaking changes in public API of SDK.
It is optional to update application code, when this digit is incremented.
Third version digit tracks internal changes in SDK. No updates in application code are
necessary to update to version, which has this number incremented.

Changes not breaking compatibility:

Adding new optional interface to SDK setup,
Adding new method to any domain,
Adding new enum value to input or output,
Adding new field in input or output model.

Wallet SDK at the very beginning performs authentication of application and device to Wallet
Server.

MDC SDK is responsible for most of the security issues. However, in the Money Transfer Hub
solution, sensitive data such as PAN or CVC are processed. They are taken as an array of
characters. This data is not held, but immediately wiped from RAM.

There are performed security checks on Wallet SDK side. Security checks consists of:

root access detection,
hooking protection,
debugging protection,
custom ROM protection,
data tampering protection.

Wallet SDK has some mandatory requirements to make it work:

device cannot be rooted,
Android OS should be in version 6.0 or above,
iOS OS should be in version 13.0 or above,
devices cannot have enabled debugging,
MDC SDK integration.

Communication with Wallet Server

Security

Security Checks and Data Clearing

Requirements

Configuration



The entire solution requires configuration data necessary for the product to operate in line with the
Customer's expectations. For more detailed information about customer account configuration

requirements please see Money Transfer documentation.

https://bookstack.verestro.dev/books/money-transfers/page/money-transfers-overview


This section describes a detailed description of the processes provided in the QR Payments solution
and the appearance of the application from the end user point of view.

This section describes use cases which can be initiated using Wallet Server P2P API. This API should
be used by Customers through integrated Wallet QR SDK to manage Transactions and
Transaction’s Senders/Receivers, Commission calculation and determine Currencies on Wallet
Server. Every method below is secured by session token. For more detailed information about non-

QR functionalities offered by Money Transfer please see Money Transfer documentation.

If the user and his card are present in the Verestro system, such a user can perform QR
transactions using the Verestro QR Payments Hub solution. This type of transaction allows the user
to make a transfer by scanning the QR code and to track the transfer by providing his own code.

This diagram shows QR code transaction processes in the case that the user scans the "external"
QR code:

@startuml
skinparam ParticipantPadding 30
skinparam BoxPadding 30
skinparam noteFontColor #FFFFFF
skinparam noteBackgroundColor #1C1E3F
skinparam noteBorderColor #1C1E3F
skinparam noteBorderThickness 1
skinparam sequence {
ArrowColor #1C1E3F
ArrowFontColor #1C1E3F

Use cases

Wallet Server Money Transfer API

Transaction process

QR Payment - scan code

https://bookstack.verestro.dev/books/money-transfers/page/money-transfers-overview


ActorBorderColor #1C1E3F
ActorBackgroundColor #FFFFFF
ActorFontStyle bold
ParticipantBorderColor #1C1E3F
ParticipantBackgroundColor #1C1E3F
ParticipantFontColor #FFFFFF
ParticipantFontStyle bold
LifeLineBackgroundColor #1C1E3F
LifeLineBorderColor #1C1E3F
}
participant "User" as user
participant "Mobile App" as mob
participant "Verestro Mobile SDK" as sdk
participant "Verestro Money Transfer API" as p2p
participant "Verestro THC API" as thc
participant "Acquirer" as acq
participant "Issuer" as acs
user->mob: 1. User scans QR code
mob->sdk: 2. Provides scanned QR code
sdk->sdk: 3. Parses obtained QR - extract data
note right of sdk: Wallet SDK uses dedicated library for QR handling - IMV Standard
mob<-sdk: 4. Returns extracted data from scanned QR code
user<-mob: 5. Shows all transaction data extracted from QR code - optional
note right of user: If QR code is static, user provides amount
user->mob: 6. Accepts transaction
note right of user: 3ds authentication may be required at this point
note right of user: 3ds authentication flow described on above diagram
mob->sdk: 7. Performs transaction
sdk->p2p: 8. Provides transaction data and execute transaction
p2p->acq: 9. Perform transaction
acq->acs: 10. Perform Funding from provided card if possible
acq<-acs: 11. Success
p2p<-acq: 12. Success + transaction id
p2p->thc: 13. Store transaction with status Funding
p2p<-thc: 14. Transaction has been stored successfully
sdk<-p2p: 15. Transaction success
mob<-sdk: 16. Transaction success
user<-mob: 17. Your transaction has been sent
@enduml

After scanning the received QR code the Mobile SDK decomposes the data contained in the QR
code. The user sees the transaction data, such as the amount that will be sent after confirming the
transfer or the currency in which the transfer will be made etc. After confirming the transfer of the
funds, the SDK forwards the request to the Wallet API. Wallet API in turn forwards the request to
the Acquirer. Based on the data received, the Acquirer contacts the bank to complete the
transaction. If the bank agrees, the funding process is carried out - collecting funds from the



Sender's account. After the funding is completed, the funds are transferred to the appropriate
Receiver.
To facilitate understanding of the process flow, each of the steps is described below in the correct
order (points highlighted in blue are performed outside the Verestro Server):

1. User scans QR code using device (possible only if provided the device supports such
functionality).

2. Verestro Mobile SDK gets data from the scanned QR code.
3. User confirms the transfer and authenticates himself via 3ds authentication process.
4. After going through the 3ds process, the funds transfer process begins.
5. The application orders the transfer of funds by communicating with the Verestro backend

via the Verestro Mobile SDK.
6. Money Transfer API communicates with Data Core to check whether the card details

belong to the user and the receiver.
After receiving a positive response from Data Core, Money Transfer API performs
money send transaction.

7. Acquirer receives a request to make a transfer of funds.
8. The Acquirer communicates with the Issuer regarding the execution of the transfer.

The Sender's account is debited.
The Receiver’s account is credited.

9. The Acquirer receives information from the Issuer that the operation has been performed.
10. Acquirer informs Money Transfer API about the positive status of the ordered operation.
11. Money Transfer API saves transaction details in the Transaction History Core API.
12. Money Transfer API informs Mobile SDK about the positive status of the ordered operation.
13. Mobile SDK informs Mobile Application about the positive status of the ordered operation.
14. The Mobile Application displays to the user a successful transfer of funds.

This diagram shows QR code transaction processes in the case that the user generates QR code:

@startuml
skinparam ParticipantPadding 30
skinparam BoxPadding 30
skinparam noteFontColor #FFFFFF
skinparam noteBackgroundColor #1C1E3F
skinparam noteBorderColor #1C1E3F
skinparam noteBorderThickness 1
skinparam sequence {
ArrowColor #1C1E3F
ArrowFontColor #1C1E3F
ActorBorderColor #1C1E3F
ActorBackgroundColor #FFFFFF
ActorFontStyle bold
ParticipantBorderColor #1C1E3F

QR Payment - generate code



ParticipantBackgroundColor #1C1E3F
ParticipantFontColor #FFFFFF
ParticipantFontStyle bold
LifeLineBackgroundColor #1C1E3F
LifeLineBorderColor #1C1E3F
}
participant "User" as user
participant "Payer" as payer
participant "Mobile App" as mob
participant "Verestro Mobile SDK" as sdk
participant "Verestro Money Transfer API" as p2p
participant "Verestro THC API" as thc
participant "Acquirer" as acq
participant "Issuer" as acs
user->mob: 1. User opens QR code generating
note right of user: User generates QR
mob->sdk: 2. Provides data fulfilled by the user
sdk->sdk: 3. Coverts obrained data into QR code
note right of sdk: Wallet SDK uses dedicated library for QR handling - IMV Standard
mob<-sdk: 4. Returns QR with parsed data
user<-mob: 5. Shows all transaction data and generated QR code
note right of user: User shows generated QR to the potential payer
note right of payer: Payer scans QR code
payer->payer: 6. Scans QR code
mob->sdk: 7. Get transaction data from QR code
mob<-sdk: 8. Returns transaction data obtained from QR code
payer<-mob: 9. Shows all transaction data
payer->mob: 10. Confirms money transfer and pass 3ds
note right of payer: 3ds authentication may be required at this point
note right of payer: 3ds authentication flow described on above diagram
mob->sdk: 11. Performs transaction
sdk->p2p: 12. Provides transaction data and execute transaction
p2p->acq: 13. Perform transaction
acq->acs: 14. Perform Funding on Payer's card if possible
acq<-acs: 15. Success
p2p<-acq: 16. Success + transaction id
p2p->thc: 17. Store transaction with status Funding
p2p<-thc: 18. Transaction has been stored successfully
sdk<-p2p: 19. Transaction success
mob<-sdk: 20. Transaction success
payer<-mob: 21. Your transaction has been sent
acq->acs: 22. Perform Credit on User's card if possible
acq<-acs: 23. Success
p2p<-acq: 24. Success + transaction id
p2p->thc: 25. Update transaction status to CLEARED
@enduml



The QR Money Transfer Hub Solution supports the 3DS 2.0 process and it is required when user is
initiating a transaction. This is an authentication method based on the alleged cardholder data
check, biometric authentication and improved customer experience.

As mentioned in the "Configuration" paragraph, a specific 3DS integration is required depending on
which ACQ Verestro will connect to when making a transaction.

If the integration with a given ACQ has already been made, Verestro only need to
configure the appropriate merchant identifier, which should be provided by the Customer.

If the integration with the required billing agent has not yet been completed, it will be one of the
activities for which Verestro will be responsible. Note that integration with 3DS increases the scope
of required development.
In card to card transfer, the authentication process is required. It is to confirm that the user is
definitely the owner of the card.

This diagram shows high level 3ds authentication processes:

@startuml
skinparam ParticipantPadding 30
skinparam BoxPadding 30
skinparam noteFontColor #FFFFFF
skinparam noteBackgroundColor #1C1E3F
skinparam noteBorderColor #1C1E3F
skinparam noteBorderThickness 1
skinparam sequence {
ArrowColor #1C1E3F
ArrowFontColor #1C1E3F
ActorBorderColor #1C1E3F
ActorBackgroundColor #FFFFFF
ActorFontStyle bold
ParticipantBorderColor #1C1E3F
ParticipantBackgroundColor #1C1E3F
ParticipantFontColor #FFFFFF
ParticipantFontStyle bold
LifeLineBackgroundColor #1C1E3F
LifeLineBorderColor #1C1E3F
}
participant "User" as user
participant "Mobile App" as mob
participant "Verestro Mobile SDK" as sdk
participant "Verestro Money Transfer API" as p2p
participant "Acquirer" as acq

3DS Authentication



participant "Mastercard/VISA" as mcvisa
participant "ACS/Issuer" as acs
note left of mob: User has confirmed currencies and accepted shown currency rate
user->mob: 1. Enters CVC code
note left of mob: In this step the application begins 3DS authentication process. 
note left of mob: If the bank decides that 3ds is not required, not any action will be performed.
note left of mob: Diagram shows the option requiring the user to authenticate.
mob->sdk: 2. Initialize 3DS process
sdk->p2p: 3. Initialize 3DS process
p2p->acq: 4. Initialize 3DS process
note left of acs: Bank returns decision whether it is necessary for the user to authenticate
acq->mcvisa: 5. Is 3DS authentication required?
acq<-mcvisa: 6. ThreeDS Method
p2p<-acq: 7. ThreeDS Method
p2p->acq: 8. Continue 3DS process
acq->acs: 9. Continue 3DS process
acq<-acs: 10. Challenge required
p2p<-acq: 11. Challenge required
sdk<-p2p: 12. Challenge required
mob<-sdk: 13. Challenge required
user<-mob: 14. Informs user that challenge is required
note left of mob: Bank's page content is provided
user->user: 15. Performs challenge
note right of user: After a successful challenge, the Bank sends PaRes/cRes, which is intercepted by
the Wallet SDK and provided to the Money Transfer API
user-->mob
mob-->sdk
sdk->p2p: 16. Provides intercepted PaRes/cRes
p2p->acq: 17. Provides obtained PaRes/cRes
acq->acs: 18. Check authentication for provided PaRes/cRes
acq<-acs: 19. Authentication success
p2p<-acq: 20. Authentication success
sdk<-p2p: 21. Authentication success
mob<-sdk: 22. Authentication success
user<-mob: 23. Informs about the successful completion of the authentication process
@enduml

To facilitate understanding of the process flow, each of the steps is described below in the correct
order (points highlighted in blue are performed outside the Verestro Server):

1. Mobile application contacts the Verestro Server via the Verestro Mobile SDK to start 3ds
process.

2. Mobile SDK provides all necessary data to the Money Transfer API (including user/card id
and 3ds authentication request id) while calling the 3ds initialization method.



3. Having all the necessary information, Money Transfer API orders Acquirer to start the 3ds
authentication process.

4. Acquirer transfers the card and user details to ACS.
5. If the user is the owner of the card, the ACS returns a positive answer and a decision

whether the continuation of the authentication process is required (according to the
diagram above, the scenario with the necessity to continue the process is described).

6. ACS informs the Acquirer that the 3ds process continue is required.
7. Acquirer informs Money Transfer API about ACS decision.
8. Money Transfer API requests Acquirer to continue the authentication process (the

authentication id is provided.
9. Acquirer provide the request to continue the process to the ACS.

10. ACS informs about the necessity to perform the Challenge process and returns necessary
parameters such as:

challengeHtmlFormBase64 - this field is a BASE64 encrypted html source file
containing the ACS’ challenge 3DSecure frame.
cReq - data for building a form such as challengeHtmlFormBase64.

11. Acquirer informs Verestro Money Transfer API that ACS requires Challengeand provides
above parameters.

12. Verestro Money Transfer API forwards the obtained information to Verestro Mobile SDK.
13. Verestro Mobile SDK decodes the received challengeHtmlFormBase64 parameter and

transmits the received frame of the mobile application.
14. The user is redirected to the bank's website where he performs the Challenge process.
15. After a successful Challenge process, the bank sends the cRes / PaRes parameter. This

response is intercepted by the Verestro Mobile SDK and forwarded to the Verestro Money
Transfer API.

16. Verestro Money Transfer API provides the received cRes / PaRes to Acquirer.
17. Acquirer provides the above parameters to ACS for verification.
18. If everything was done correctly, the ACS informs Acquirer about the successful

completion of the 3ds authentication. Among other things, the following parameters are
included in the response.

cavv - property determined by the ACS. The value may be used to provide proof of
authentication.
eci - property is determined by the ACS. This property contains the two digit
Electronic Commerce Indicator (ECI) value, which is to be submitted in a credit card
authorization message.

19. Acquirer provides information about successful completion of the 3ds authentication
among with the above parameters obtained from the ACS to Verestro Money Transfer API.

20. Verestro Money Transfer API provides information about successful completion of the 3ds
authentication among with the above parameters obtained from the ACS to Verestro
Mobile SDK.

21. Verestro Mobile SDK provides positive response to mobile application. The information is
shown to the user.

User experience & screenshots



This chapter introduces the main actions and processes in the application associated with QR
module from the end
user point of view.

The module responsible for QR payments can be divided into two functionalities. The first one
allows you to make a payment by scanning the QR code. The second functionality allows user to
generate a QR code with which user can order a transfer to his card.

The scan QR option allows user to order a money transfer by scanning the QR code issued by the
potential recipient. The execution of this path depends on whether the user's device has a QR scan
function. Additionally, the application may request access to the camera of the device used.

The pictures below show “scan QR code” view:

The rest of the processes apply to "Money Transfer" as a product as a whole are described in

separate Money Transfer documentation. QR payments is one of the components of the
Money Transfer product.

QR Payment flow

Scan QR code

https://bookstack.verestro.dev/books/money-transfers/page/money-transfers-overview


On the screen above the user selects the scan
tab for the application to get all the
information needed to make the transfer from
the provided QR code.

On the screen above the redirection following
scanning the QR code is shown. The user can
see to whom the transfer will be made and
which of his cards will be debited. If the user
is ready to make the transfer, he confirms the
action with the confirm button. Similar to a
card to card transaction, the 3ds process may
be required (See “Card to card” chapter).

https://bookstack.verestro.dev/uploads/images/gallery/2022-05/image-1651756738245.png
https://bookstack.verestro.dev/uploads/images/gallery/2022-05/image-1651756740909.png


On the screen above user is informed about
the successfully money transfer. Return
button will redirect the user to the main page.

On the screen above user is informed about
the unsuccessfully money transfer. In this
case user is able to try again the transfer or
return to the main page.
Example reasons of the transaction fail:

Luck of funds,
3ds failed,
Invalid card data.

The scan QR option allows user to generate a QR code. With the generated code, the user can have
his account topped up by showing the code to another person.

The pictures below show “generate QR code” view:

Generate QR code

https://bookstack.verestro.dev/uploads/images/gallery/2022-05/image-1651756760997.png
https://bookstack.verestro.dev/uploads/images/gallery/2022-05/image-1651756765259.png


On the screen above user chooses which of his cards will be debited, and in what currency the
transfer is to be made. If the above choices have been made, the user has to enter the amount
he wants to receive.

https://bookstack.verestro.dev/uploads/images/gallery/2022-05/image-1651756813066.png
https://bookstack.verestro.dev/uploads/images/gallery/2022-05/image-1651756816592.png


On the screen above the user enters the amount he wants to receive and then confirms the
selection with the green button in the lower right corner of the screen. After performing all the
required actions, a QR code and information about the ordered transaction (card, currency and
amount) are generated on the screen.

https://bookstack.verestro.dev/uploads/images/gallery/2022-05/image-1651756829405.png
https://bookstack.verestro.dev/uploads/images/gallery/2022-05/image-1651756832375.png

