
Token Payment
Service
Token Payment Service is a functionality that allows Customer to order the one-time payment
transactions with card payment token obtained from Google Pay™ or another tokenization platform
incl. Card on File

Introduction
Overview
Onboarding
Integration with Token Payment Service

Introduction
Token Payment Service is a functionality that allows Customer to order the one-time payment
transactions with card payment token obtained from Google Pay™. This technology provides a
backend to backend oriented solution to which Customer should be integrated. By using this
solution, Customer's users can easily pay for their purchases using their cards stored in Google
Pay™. After selecting the Google Pay as the payment option, the Customer gets encrypted card
payment token from Google Pay™. Card payment token is encrypted on the Google Pay™ side with
Verestro's public Key. The Customer has to provide this encrypted token to Verestro by using
Token Payment Service soution and Verestro handle entire transaction process by his own. The
Customer must be registered in Google Pay™ as a merchant to be able to get a card payment
token and have an account with some Acquirer with which Verestro will connect when ordering a
transaction.

How to connect with us?
Verestro provides Token Payment Service API which is implemented according to the REST model.
This API offers methods that allow to order transaction using payment token obtained from Google
Pay™ and authenticate the cardholder using 3D Secure protocol. Verestro team actively supports
Customer with integration. More informations about Token Payment Service API can be found here.

https://bookstack.verestro.dev/books/token-payment-service/page/integration-with-token-payment-service

Overview
This document provides high level description of functionalities offered by Token Payment Service.
Token Payment Service supports e-commerce transactions by card payment token received from
Google Pay™ thus eliminating the need to use real card details during transactions. As a registered
PSP in Google Pay™, Verestro will decrypt the card payment token and perform the transaction on
behalf of the Customer. The solution is very easy to integrate - Customer must integrate two API
methods: tokenPayment and deposit . There is also a third method getTransacionDetails which is
optional to integrate. The solution can be supported by various Acquirers.

Abbreviation
This section shortly describes abbreviations and acronyms used in the document.

Abbreviation Description

ACQ Acquiring Institution / Acquirer

ACS Access Control Server

OS Operative System

Mid Merchant Identifier identifying the Customer in the
Acquirer system

PCI DSS Payment Card Industry Data Security Standard

Verestro recommends using the getTransacionDetails method. For example in situations when
there were any problems with the connection between the Customer and Verestro. This
method allow Customer to get current status of the ordered transaction.

If the Customer requires the settlement of the transaction by a new Acquirer – to which
Verestro is not integrated – there will be required new integration between Verestro and the
new Acquirer. The specification of the new Acquirer should be provided by the Customer.

https://bookstack.verestro.dev/books/token-payment-service/page/integration-with-token-payment-service#bkmrk-token-payment
https://bookstack.verestro.dev/books/token-payment-service/page/integration-with-token-payment-service#bkmrk-deposit
https://bookstack.verestro.dev/books/token-payment-service/page/integration-with-token-payment-service#bkmrk-get-transaction-deta
https://bookstack.verestro.dev/books/token-payment-service/page/integration-with-token-payment-service#bkmrk-get-transaction-deta
https://bookstack.verestro.dev/books/token-payment-service/page/integration-with-token-payment-service#bkmrk-transaction-statuses

PAN Permanent Account Number

CVC Card Verification Code

3DS 3-D Secure

PSP Payment Service Provider

Terminology
This section explains a meaning of key terms and concepts used in this document.

Name Description

Customer/Merchant Institution which uses Verestro products. This institution
decides which solution should be used depending on the
business requirements and how transaction should be
processed.

User End-User which uses Customer application and pays for
Customer's goods using Google Pay™ solution. This is the
root of the entity tree. User is an owner of the card stored
in Google Pay™ system.

Card Payment Token Card Payment Token is an entity created by Google Pay™
and returned to the Customer. This token is created when
the Customera application user selects the card he wants
to pay with Google Pay. Card Token Payment is encrypted
and does not contain valid card details. This token is
decrypted on the Verestro side and then Verestro orders
the payment to the Customer's Acquirer.

Authorization Method The way of the authentication of the card transaction.
Verestro supports followed authorization methods:
PAN_ONLY and CRYPTOGRAM_3DS if Customer's country

belongs to the European Union. Authorization method is
always provided in the Google Pay™ encrypted payload as
authMethod parameter.

Gateway Id Phrase/value that identifies a given Payment Service
Provider in the Google Pay™ system. The Merchant
provides gateway Id to Google Pay™ to obtain a card
payment token. By provided gateway Id, Google Pay™
encrypts the card payment token with the appropriate
public key. Verestro is defined by a gateway Id with the
value verestro

Gateway Merchant Id Unique Customer identifier assigned by Verestro during
the onboarding process. This identifier is in the form of a
UUID . Verestro understands and uses this to verify that

the message was for the Customer that made the request.
Customer passes it to Google Pay™. More information
about the Gateway Merchant Id can be found in Google
Pay™ documentation.

Payment Service Provider Payment Service Provider is an entity that helps
Merchants transfer sensitive data to Acquirer during the
transaction. Payment Service Provider should be PCI DSS
compilent. In the Token Payment Service solution, Verestro
has the role of PSP.

Acquirer External Institution resposible for processing transaction
and 3ds requests ordered by the by Verestro Token
Payment Service solution in Customer context. Acquirer
connects with banks / card issuers and returns an
information whether the ordered action on a given card
payment token is possible.

MID Merchant identifier. This entity is represending Customer /
Merchant in Acquirer's system. Customer has to provide
the mid information to enable mid configuration in the
Verestro system. Required to process transactions and
3DS via Verestro system.

Card Network This is the type of card that allows you to make payments
using a card payment token. Verestro allows to use
MASTERCARD , VISA and MAESTRO cards.

PAN It is 7-16 digits of the credit / debit card number. These
digits contain the Permanent Account Number assigned by
the bank to uniquely identify the account holder. It is
necessary to provide it when User wants to pay with a card
for purchases on the internet.

CVC It is a type of security code protecting against fraud in
remote payments. Card Verification Code is necessary to
provide it when User wants to pay with a card for
purchases on the internet.

Expiration Date It is a date of the card validity ending and contains two
values – month/year. Card will be valid to the last day of
the month of the year showed on it. It is necessary to
provide it when User wants to pay with a card for
purchases on the internet.

3DS 3-D Secure is a method of authorization of transaction
made without the physical use of a card, used by payment
organization. The 3DS process in the Merchant Paytool
solution is performed internally in the Verestro system.

https://developers.google.com/pay/api/processors/guides/implementation/understand-our-payload
https://developers.google.com/pay/api/processors/guides/implementation/understand-our-payload

PCI DSS It is a security standard used in environments where the
data of payment cardholders is processed. The standard
covers meticulous data processing control and protection
of users against violations.

Token Payment Service key
components
Token Payment Service is a solution that has been created to provide the functionality that allows
Customer to process payments using Google Pay™. An additional assumption was that the
payment process should be performed outside the Customer's system, which frees him from the
need to handle with sensitive data or the transaction itself. The Customer only receives information
that the transaction was successful or not. Customer can also follow the most actual transaction
status. This section provides introduction to technologies which are supported by Token Payment
Service. High level architecture diagram is presented to show the place and usage of the each
entity in the solution.

Component Description

Token Payment Service API Component stores the configuration data of a given
Customer such Merchant Name or Merchant Id and also
communicates with various Acquirers, collect transaction
data and statuses. This component also triggers
notifications to the Customer and the end user (depending
on the Customer requirements) about successful or
unsuccessful transaction.

Notification Service Component responsible for sending information to the
Customer about the transaction status. It is also
responsible for sending email to the end user about the
transaction. Notification Service is triggered by Token
Payment Service API.

@startuml
skinparam ParticipantPadding 30
skinparam BoxPadding 30
skinparam noteFontColor #FFFFFF
skinparam noteBackgroundColor #1C1E3F

The diagram below shows each step of the card payment token transaction process

https://bookstack.verestro.dev/books/token-payment-service/page/integration-with-token-payment-service#bkmrk-transaction-statuses
https://bookstack.verestro.dev/books/token-payment-service/page/integration-with-token-payment-service#bkmrk-transaction-statuses

skinparam noteBorderColor #1C1E3F
skinparam noteBorderThickness 1
skinparam sequence {
ArrowColor #1C1E3F
ArrowFontColor #1C1E3F
ActorBorderColor #1C1E3F
ActorBackgroundColor #FFFFFF
ActorFontStyle bold
ParticipantBorderColor #1C1E3F
ParticipantBackgroundColor #1C1E3F
ParticipantFontColor #FFFFFF
ParticipantFontStyle bold
LifeLineBackgroundColor #1C1E3F
LifeLineBorderColor #1C1E3F
}
participant "User" as user
participant "Customer Application" as app
participant "Google Pay" as gp
participant "Verestro Token Payment Service" as tps
participant "Acquirer" as acq
note right of user: User wants to pay with Google Pay
user->app: 1. Pay with Google Pay and choose card
app->gp: 2. Requests for card token
gp->gp: 3. Encrypts card token with Verestro pub key
app<-gp: 4. Returns encrypted card token
app->tps: 5. Requests token payment "/payment/token.google-pay"
tps->tps: 6. Decrypts card token
tps->acq: 7. Orders transaction
tps<-acq: 8. Transaction status
note left of acq: 3DSecure authentication may be required
app<-tps: 9. Transaction status
user<-app: 10. Transaction status
user<--tps: 11. Sends email notification - optional
@enduml

Allowed card networks
Listed below are the types of cards supported in transactions using the Token Payment Service and
Google Pay™ solution:

Card type

MASTERCARD

VISA

MAESTRO

Implementation models
Verestro provides REST API implementation model in Token Payment Service Solution. In this
model Customer has his own application which should be integrated with Token Payment Service
API. Verestro provides all necessary backend methods. Customer is responsible for integrate
provided methods with his own application. Technical information about the integration can be
found here. Below diagram shows high level architecture of the solution:

image-1670238277191.drawio.pngImage not found or type unknown

https://bookstack.verestro.dev/books/token-payment-service/page/integration-with-token-payment-service
https://bookstack.verestro.dev/uploads/images/gallery/2022-12/image-1670238277191-drawio.png

Onboarding
Register in Verestro
The onboarding process takes place mainly on Verestro side. However, in order to perform
onboarding, the Customer must provide some information needed to correctly configure account in
Token Payment Service. Configuration includes following information:

Customer name Basically, it's the name of the Customer's company, his
online shop and so on.

Postback URL This is the address to which information will be send to the
Customer about the transaction made by a given user.
This parameter is not required if the Customer does not
want to receive notifications regarding the transaction. For
more information about Postback URL please check Use
cases chapter.

Notification to the user It is a flag that defines whether e-mail notifications was
sent to the User. Such e-mail contains the transaction
status, transaction execution date, transaction identifier,
date and amount. The Customer decides whether Verestro
will send such e-mails or not.

Merchant Id (MID) This ID is represending Customer in Acquirer's system.
Customer has to provide the mid information to enable
mid configuration in the Verestro system. Required to
process transactions and 3DS via Verestro system.
Verestro offers support in creating such an account in
Acquirer system if it has integration with a given Acquirer.
If the client requires transactions to be processed with the
participation of a new Acquirer, then Verestro must
perform a new integration. The client is then responsible
for providing the documentation that Verestro will use
during the integration.

After creating an account for the Customer, Verestro provides necessary data to the Customer. This
data is required to use the Token Payment Service API. Such data includes:

Basic Authorization Authorization data for Customer which allow to use the
solution. Authorization data are the login and password of
the Customer account in the Verestro system. Basic
authorization is needed if the Customer wants to deposit
the AUTHORIZED transaction or to getTransacionDetails .
Basic authorization should be provided as Authorization
header with Base64 encoded value of login and password.
An example of the Authorization header can be found here
.

https://bookstack.verestro.dev/books/token-payment-service/page/integration-with-token-payment-service#bkmrk-deposit
https://bookstack.verestro.dev/books/token-payment-service/page/integration-with-token-payment-service#bkmrk-get-transaction-deta
https://bookstack.verestro.dev/books/token-payment-service/page/integration-with-token-payment-service#bkmrk-deposit

Gateway Id This is a constant and unique value that defines the PSP in
the Google Pay™ system. When making a call to get a card
token, the Customer transfers this value to Google Pay™ in
the request. Verestro is defined by Gateway Id with
verestro value.

Gateway Merchant Id This is a unique Customer identifier assigned by Verestro
during the onboarding process. This identifier is in the
form of a UUID . Verestro understands and uses this to
verify that the message was for the Customer that made
the request. Customer passes it to Google Pay™. More
information about the Gateway Merchant Id can be found
in Google Pay™ documentation.

Register in Google Pay™
To use the Token Payment Service solution, it is necessary for the Customer to be registered as
merchant in the Google Pay™ system. An unregistered Customer will not be able to get the card
payment token from Google Pay. To register merchant account in Google Pay™ visit Google Pay for
Business quick start guide or contact Google Pay™ support. After completing registration as a
merchant, the Customer will receive an access to Google Pay™ documentation enabling technical
integration.

Register as Web Merchant

Google Pay Web integration checklist A checklist presenting the Google Pay integration
requirements that must be met by the Customer
integrating web application

Google Pay Web developer documentation Technical documentation describing web integration with
the Google Pay solution

Google Pay Web Brand Guidelines Branding requirements that must be met by the
Customer's web application to be able to use the Google
Pay solution

Register as Mobile Merchant

Authorization data on BETA and PROD environments differ in password. The login and the
gateway Id is the same on both environments.

Mobile integration model is work in progress... The solution will be available for mobile
merchants soon. This will allow Customers with mobile applications to integrate to the
Token Payment Service Solution.

https://developers.google.com/pay/api/processors/guides/implementation/understand-our-payload
https://support.google.com/pay/business/topic/7684388?hl=en&ref_topic=7513501
https://support.google.com/pay/business/topic/7684388?hl=en&ref_topic=7513501
https://developers.google.com/pay/api/web/guides/test-and-deploy/integration-checklist
https://developers.google.com/pay/api/web
https://developers.google.com/pay/api/web/guides/brand-guidelines

Google Pay Android integration checklist A checklist presenting the Google Pay integration
requirements that must be met by the Customer
integrating mobile application

Google Pay Android developer documentation Technical documentation describing mobile integration
with the Google Pay solution

Google Pay Android brand guidelines Branding requirements that must be met by the
Customer's mobile application to be able to use the Google
Pay solution

https://developers.google.com/pay/api/android/guides/test-and-deploy/integration-checklist
https://developers.google.com/pay/api/android
https://developers.google.com/pay/api/android/guides/brand-guidelines

Integration with Token
Payment Service
Overview
This chapter provides the instruction of the integration with the solution of the Token Payment
Service using Google Pay™ card payment token. Prior to using this solution the Customer have to
proceed onboarding process in Verestro and to have an registered merchant account in Google
Pay. To register a merchant in Google Pay, please contact Google Pay™ Support.

Integration
Verestro Token Payment Service provides a method for e-commerce payments using a card
payment token. The card payment token is generated by Google Pay™ and returned to the
Customer in the form of an encrypted payload. Google Pay™ encrypts the card payment token with
Verestro's public key. The Customer transfers the received payload to Verestro, which in turn is
decrypted on the Verestro side and then the payment is ordered. To facilitate merchant integration
with the solution provided by Google Pay™ and to understand the process of making requests for a
card payment token, Google Pay™ provides Google Pay Web developer documentation.

Google Pay™ provides a Google Pay Web integration checklist that will help the Customer
with integration step by step. The documentation is available after whitelisting in Google
Pay™ system. The whitelisting process is performed by Google Pay™ during the Customer's
merchant account registration process.

In addition, Google Pay™ provides Google Pay Web Brand Guidelines that presents branding
requirements for web merchants registered in Google Pay™. These requirements must be
met by the Customer so that he can allow his payers to pay via the Google Pay™ solution.

To create an account in Verestro system follow the instruction in the Onboarding chapter.

https://bookstack.verestro.dev/books/token-payment-service/page/onboarding
https://developers.google.com/pay/api/web
https://developers.google.com/pay/api/web/guides/test-and-deploy/integration-checklist
https://developers.google.com/pay/api/web/guides/brand-guidelines
https://bookstack.verestro.dev/books/token-payment-service/page/onboarding

The Token Payment Service provides a backend-to-backend oriented payment solution. The
solution was created in accordance with the assumptions of the REST API model. The functionality
allows Customer to perform DEPOSITED or AUTHORIZED transactions. If it is an AUTHORIZED
 transaction, it is necessary to call the deposit method otherwise, the entire transaction amount will
be reversed to the payer's account. To help you understand the difference between DEPOSITED and
AUTHORIZED transaction, please see the table below:

DEPOSITED tokenPayment method returned DEPOSITED transaction
status. There is no further action required.

AUTHORIZED tokenPayment method returned AUTHORIZED transaction
status. This status means that the funds for the purchase
have been frozen on the payer's account. The deposit
method should be called. The amount provided in the
deposit method may be equal to or less than the amount

provided in the tokenPayment method.
AUTHORIZED status appears only when the deposit

parameter is false . This is the parameter accepted in the
tokenPayment method.

Endpoints
Endpoints chapter contains description of endpoints for Token Payment Service methods. Verestro
provides two implementation environments: test - BETA and production - PROD . Below table
presents the addresses of each of the domains:

Environemt Base url

BETA https://merchant-beta.upaidtest.pl/champion/

PROD https://merchant.upaid.pl/champion/

Methods in API
Token Payment

POST [base-url]/payment/token/google-pay

The method allows e-commerce payment using a token obtained from Google Pay™. The method
also accepts additional parameters such as transaction item ID or payer details. A more detailed

Google Pay Web developer documentation is only available after whitelisting. The
whitelisting process is performed by Google Pay™ during the merchant account registration
process.

https://bookstack.verestro.dev/books/token-payment-service/page/integration-with-token-payment-service#bkmrk-deposit
https://bookstack.verestro.dev/books/token-payment-service/page/integration-with-token-payment-service#bkmrk-token-payment
https://bookstack.verestro.dev/books/token-payment-service/page/integration-with-token-payment-service#bkmrk-token-payment
https://bookstack.verestro.dev/books/token-payment-service/page/integration-with-token-payment-service#bkmrk-deposit
https://bookstack.verestro.dev/books/token-payment-service/page/integration-with-token-payment-service#bkmrk-deposit
https://bookstack.verestro.dev/books/token-payment-service/page/integration-with-token-payment-service#bkmrk-token-payment
https://bookstack.verestro.dev/books/token-payment-service/page/integration-with-token-payment-service#bkmrk-token-payment
https://merchant-beta.upaidtest.pl/champion/
https://merchant.upaid.pl/champion/
https://developers.google.com/pay/api/web

description of the tokenPayment method parameters can be found in the further part of this chapter.

Request body:

POST /champion/payment/token/google-pay HTTP/1.1
Content-Length: 1720
Content-Type: application/json
Host: merchant.upaid.pl

{
 "amount": 1000,
 "itemId": "{{itemId}}",
 "description": "SUCCESS",
 "browserIp": "41.11.22.1",
 "currency": "PLN",
 "mid": "testMid",
 "deposit": false,
 "sender": {
 "firstName": "firstName",
 "lastName": "lastName",
 "email": "emaiL@email.pl"
 },
 "token": {
 "signature":
"MEUCIQDx0PjhU6041nIbz6mBagbDUGE9DF8NtLAq1hKyQih9sQIgd5V3ROT5uVXZuYt0i/1RREc1mNnkg0VlnstseI4
oN4w\u003d",
 "intermediateSigningKey": {
 "signedKey":
"{\"keyValue\":\"MFkwEwYHKoZIzj0CAQYIKoZIzj0DAQcDQgAEUj6saq5iwo1JIkLti6dvNFdNJygVoFZUhiKzGwsC2ebD
5v58RutdePd2GxMvx8nGuF3YjVKjwk28R5r2hyTqJQ\\u003d\\u003d\",\"keyExpiration\":\"1667554292000\"}",
 "signatures": [

"MEYCIQDRc5NBd/GC5loetxwL3idIMMsR2vpXicoqlvsPEFIirwIhAMOHvdrHt/sMt5PxS4o0SYO3sCOb6hT9a2t+PMBc
M/u7"
]
 },
 "protocolVersion": "ECv2",
 "signedMessage":
"{\"encryptedMessage\":\"Tlkj3N2bApMJ2x2IUgsoTvqYLDuUNpzWmSQbgAIjG2kr+1buPgh70qeKkZkfZRCvJMV0py
1R0RzUyqJujZIqX9tIxPyBX8yQ/bZNOR5AJXDzSLgR2+WuBIa0KRySCwNmzV4U2RVkUdZiIVr8/JL/o7NH768A6rl/Gvh

https://bookstack.verestro.dev/books/token-payment-service/page/integration-with-token-payment-service#bkmrk-token-payment

Request headers:

Type Value Constraints Description

Accept-Language PL Not required Response message
language

Content-Type application/json Required Content type of the request

Request fields

Name Name Type Description

deposit Boolean Optional By setting this flag, the
Customer decides whether
the funds will be
immediately taken from the
payer's account (
DEPOSITED) or frozen (
AUTHORIZED). Verestro
enables configuration in
which each successful
transaction ends with the
DEPOSITED status.
Default value for this flag is
false

browserIp String Optional Browser ip

amount Number Not null Transaction amount (in
pennies)

currency String Not empty Transaction currency

description String Not empty Simple description of
transaction

sender Object Not null Sender details

sender.firstName String Not empty Sender first name

qYfpsFtprATFgsFulDS/dnAhJTS4tykk34wZXnyCb94YHmI5rbN8FFkC/BygPVIKgGt5YWngxRZO1yBSSbcyWb3w+WXI
OaPT6XZdOqDOtOo5GgzNmYKGIdep+b0+hJsreZCG1yPw3o/QS3nDdem40jrUv/apyY1xPSjib3mjXW0e/hnkL3K43n
79po8qmswdPkyOdRh5D10ZElxXRZvI25/WqpsN/jyaeKitDlsOnIGHjiM36S1a4FrTCwmmiV8XDyVzsamW0asemTeJ9
nBbEOylF4dz0symXEWJ45l0SSvPEJqc1HMuPljw1EVAA/MF1O8HBVv7iJndyXS8c2wH5eLLCIP3CkT3qb4TjfhhGbhU5J
KclYOxHzvIDUaFYljjzlCyvR+PGwaGq0bzmjtki17t2MKNLtXioQBv9rb2WHZF+tPcA3TJLfo8vijZRzFJQb9JPzDQzCJ7N2
ORfD/LAJWMkeCcvLwuBWPZd3keI\",\"ephemeralPublicKey\":\"BH6BiZF1XFldmO+8EH13KABs4ttulS68cYHg9HRgY
CbV6mdGIa4E2YQuDtsn98MtSQoJ6wA8LtIpa5L6FF9WyCM\\u003d\",\"tag\":\"1BcFY5B7BuSa3cVwRQx58fdHvwW
O8zd0BDrOzva6O14\\u003d\"}"
 }
}

Request fields

Name Name Type Description

sender.lastName String Not empty Sender last name

sender.email String Optional Sender email

token Object Not null Token obtained from
Google

token.signature String Not null Token signature

token.intermediateSignin
gKey

Object Not null Token intermediate signing
key

token.intermediateSignin
gKey.signedKey

String Not null Signed key

token.intermediateSignin
gKey.signatures[]

Array Not null Token signatures

token.protocolVersion String Not null Protocol version

token.signedMessage String Not null Signed message

itemId String Not empty Merchant’s unique id of
transaction. Ensures the
idempotency of the
transaction.

mid String Optional This parameter indicates
which merchant terminal
will be used in the process.
If mid won’t be passed,
then payment will be
processed using the default
terminal. This value will be
generated in the
onboarding process.

Response body:

HTTP/1.1 200 OK
Content-Length: 209
Content-Type: application/json;charset=UTF-8

{
 "transactionId" : "08ea8e28-0aad-45eb-8368-f15bdadd5eba",
 "itemId" : "f34e8330-99fe-4ca4-8ee7-3628c989a6e2",
 "status" : "DEPOSITED",
 "externalTransactionId" : "49a91f00-26b4-49a2-9c77-ed37646ddf64"

https://bookstack.verestro.dev/books/token-payment-service/page/onboarding

Response fields

Name Name Description

transactionId String Identifier of transaction. This
parameter should be provided in the
deposit method if the tokenPayment

method returned AUTHORIZED
transaction status. This parameter
also defines in the context of which
transaction Verestro should return
information when executing the
getTransactionDetails method.

itemId String Merchant’s unique id of transaction.
Ensures the idempotency of the
transaction.

status String Transaction status

externalTransactionId String External transaction id

tokenPayment method cURL example:

}

$ curl 'https://merchant.upaid.pl/champion/payment/token/google-pay' -i -X POST \
 -H 'Content-Type: application/json' \
 -d '{
 "amount": 1000,
 "itemId": "{{itemId}}",
 "description": "SUCCESS",
 "browserIp": "41.11.22.1",
 "currency": "PLN",
 "mid": "testMid",
 "deposit": false,
 "sender": {
 "firstName": "firstName",
 "lastName": "lastName",
 "email": "emaiL@email.pl"
 },
 "token": {
 "signature":

https://bookstack.verestro.dev/books/token-payment-service/page/integration-with-token-payment-service#bkmrk-deposit
https://bookstack.verestro.dev/books/token-payment-service/page/integration-with-token-payment-service#bkmrk-token-payment
https://bookstack.verestro.dev/books/token-payment-service/page/integration-with-token-payment-service#bkmrk-get-transaction-deta
https://bookstack.verestro.dev/books/token-payment-service/page/integration-with-token-payment-service#bkmrk-token-payment

Transaction statuses
Depending on the transaction status, it may be necessary for the Customer to perform an action
(applies to the situation in which the transaction status is AUTHORIZED). If the Customer for some

"MEUCIQDx0PjhU6041nIbz6mBagbDUGE9DF8NtLAq1hKyQih9sQIgd5V3ROT5uVXZuYt0i/1RREc1mNnkg0VlnstseI4
oN4w\u003d",
 "intermediateSigningKey": {
 "signedKey":
"{\"keyValue\":\"MFkwEwYHKoZIzj0CAQYIKoZIzj0DAQcDQgAEUj6saq5iwo1JIkLti6dvNFdNJygVoFZUhiKzGwsC2ebD
5v58RutdePd2GxMvx8nGuF3YjVKjwk28R5r2hyTqJQ\\u003d\\u003d\",\"keyExpiration\":\"1667554292000\"}",
 "signatures": [

"MEYCIQDRc5NBd/GC5loetxwL3idIMMsR2vpXicoqlvsPEFIirwIhAMOHvdrHt/sMt5PxS4o0SYO3sCOb6hT9a2t+PMBc
M/u7"
]
 },
 "protocolVersion": "ECv2",
 "signedMessage":
"{\"encryptedMessage\":\"Tlkj3N2bApMJ2x2IUgsoTvqYLDuUNpzWmSQbgAIjG2kr+1buPgh70qeKkZkfZRCvJMV0py
1R0RzUyqJujZIqX9tIxPyBX8yQ/bZNOR5AJXDzSLgR2+WuBIa0KRySCwNmzV4U2RVkUdZiIVr8/JL/o7NH768A6rl/Gvh
qYfpsFtprATFgsFulDS/dnAhJTS4tykk34wZXnyCb94YHmI5rbN8FFkC/BygPVIKgGt5YWngxRZO1yBSSbcyWb3w+WXI
OaPT6XZdOqDOtOo5GgzNmYKGIdep+b0+hJsreZCG1yPw3o/QS3nDdem40jrUv/apyY1xPSjib3mjXW0e/hnkL3K43n
79po8qmswdPkyOdRh5D10ZElxXRZvI25/WqpsN/jyaeKitDlsOnIGHjiM36S1a4FrTCwmmiV8XDyVzsamW0asemTeJ9
nBbEOylF4dz0symXEWJ45l0SSvPEJqc1HMuPljw1EVAA/MF1O8HBVv7iJndyXS8c2wH5eLLCIP3CkT3qb4TjfhhGbhU5J
KclYOxHzvIDUaFYljjzlCyvR+PGwaGq0bzmjtki17t2MKNLtXioQBv9rb2WHZF+tPcA3TJLfo8vijZRzFJQb9JPzDQzCJ7N2
ORfD/LAJWMkeCcvLwuBWPZd3keI\",\"ephemeralPublicKey\":\"BH6BiZF1XFldmO+8EH13KABs4ttulS68cYHg9HRgY
CbV6mdGIa4E2YQuDtsn98MtSQoJ6wA8LtIpa5L6FF9WyCM\\u003d\",\"tag\":\"1BcFY5B7BuSa3cVwRQx58fdHvwW
O8zd0BDrOzva6O14\\u003d\"}"
 }
}'

Google Pay™ provides an optional method to retrieve the Billing Shipping Address. However,
these data are not used in the tokenPayment method, so please do not provide them.

Google Pay™ does not provide information such as firstName or lastName. Parameters like
this, however, are required to make a payment using the tokenPayment method. They must
be provided by the Customer together with the card payment token. Basicly the Customer
must collect and provide a card payment token from Google Pay and the name of the user of
his application.

https://developers.google.com/pay/api/web/reference/request-objects#BillingAddressParameters
https://bookstack.verestro.dev/books/token-payment-service/page/integration-with-token-payment-service#bkmrk-token-payment
https://bookstack.verestro.dev/books/token-payment-service/page/integration-with-token-payment-service#bkmrk-token-payment

reason (e.g. connection problem) did not receive information about the status of a given
transaction, it is recommended to use the getTransactionDetails method, which returns information
about the current status of a given transaction. The table below presents all possible transaction
statuses:

Name Description

PENDING Transaction waiting for execution.

FAILED Transaction failed.

AUTHORIZED Entire amount of the order was locked.

DEPOSITED Bank account was charged.

Deposit
POST [base-url]/champion/deposit

This method should be called by the Customer if tokenPayment method returns an AUTHORIZED
transaction status. This action is required to deposit freezed funds. This happens if the deposit flag
in tokenPayment was set to false . The amount provided in the deposit method may be equal to or
less than the amount provided in the tokenPayment method. This method is secured by Customer's
account credentials (basic authorization). Customer's account is created by Verestro during the
onboarding process.

Request body:

POST /champion/deposit HTTP/1.1
Authorization: Basic bG9naW46cGFzc3dvcmQ=
Content-Length: 180
Content-Type: application/json
Host: merchant.upaid.pl

{
 "transactionId": "91929c94-974a-413a-8409-5101c933daa9",
 "amount": 100,
 "requestChallengeIndicator": "NO_PREFERENCE",

https://bookstack.verestro.dev/books/token-payment-service/page/integration-with-token-payment-service#bkmrk-get-transaction-deta
https://bookstack.verestro.dev/books/token-payment-service/page/integration-with-token-payment-service#bkmrk-token-payment
https://bookstack.verestro.dev/books/token-payment-service/page/integration-with-token-payment-service#bkmrk-token-payment
https://bookstack.verestro.dev/books/token-payment-service/page/integration-with-token-payment-service#bkmrk-deposit
https://bookstack.verestro.dev/books/token-payment-service/page/integration-with-token-payment-service#bkmrk-token-payment
https://bookstack.verestro.dev/books/token-payment-service/page/onboarding

Request headers:

Type Value Constraints Description

Authorization: Basic
bG9naW46cGFzc3dvcmQ=

Required Customer's account
credentials

Content-Type application/json Required Content type of the request

Request fields

Name Name Type Description

transactionId String Required Unique ID of the
transaction. This parameter
appears in the response of
the successfuly performed
transaction using
tokenPayment method

amount Number Required Amount for transaction
(minor units of currency)

 "keyThreedsExemption": "TRANSACTION_RISK_ANALYSIS"
}

https://bookstack.verestro.dev/books/token-payment-service/page/integration-with-token-payment-service#bkmrk-token-payment

Request fields

Name Name Type Description

requestChallengeIndicator String Optional Indicates whether a
challenge was requested
for transaction.
Possible values:
NO_PREFERENCE - no
preference for challenge.
CHALLENGE_NOT_REQUE
STED - challenge is not
requested.
CHALLENGE_PREFER_BY_
REQUESTOR_3DS -
challenge is requested: 3DS
Requestor preference.
CHALLENGE_REQUESTED
_MANDATE - challenge is
requested: mandate.
RISK_ANALYSIS_ALREAD
Y_PERFORMED - challenge
is not requested:
transactional risk analysis
already performed.
ONLY_DATA_SHARE -
challenge is not requested:
only data is shared.
STRONG_VERIFY_ALREA
DY_PERFORMED -
challenge is not requested:
strong consumer
authentication is already
performed.
WHITELIST_EXEMPTION -
challenge is not requested:
utilise whitelist exemption if
no challenge required.
WHITELIST_PROMPT_RE
QUESTED - challenge is
requested: whitelist prompt
requested if challenge
required.

Request fields

Name Name Type Description

keyThreedsExemption String Optional Reason for exemption from
strong authentication
(SCA).
Possible values:
LOW_VALUE_PAYMENT -
low amount of payment.
TRANSACTION_RISK_ANA
LYSIS - transactional risk
analysis already performed.
TRUSTED_BENEFICIARY -
beneficiary is trusted.
SECURE_CORPORATE_PA
YMENT - corporate
payment is secure.
RECURRING_PAYMENT -
recurring payment.
OTHER_MERCHANT_INITI
ATED_TRANSACTION -
other merchant initiated
transaction.
SCA_DELEGATION -
delegation of strong
authentication (SCA).

Response status: HTTP/1.1 200 OK

deposit method cURL example:

Get transaction details
GET [base-url]/transactions/${transactionId}

$ curl 'https://merchant.upaid.pl/champion/deposit' -i -u 'login:password' -X POST \
 -H 'Content-Type: application/json' \
 -d '{
 "transactionId": "91929c94-974a-413a-8409-5101c933daa9",
 "amount": 100,
 "requestChallengeIndicator": "NO_PREFERENCE",
 "keyThreedsExemption": "TRANSACTION_RISK_ANALYSIS"
}'

https://bookstack.verestro.dev/books/token-payment-service/page/integration-with-token-payment-service#bkmrk-deposit

This method is optional and does not affect the process of the transaction itself. Nevertheless,
Verestro recommends using this method. In case of any problem with the connection, it allows the
Customer to know the current status of a given transaction. This method is secured by Customer's
account credentials (basic authorization). Customer's account is created by Verestro during the
onboarding process.

Request headers:

Type Value Constraints Description

Authorization: Basic
bG9naW46cGFzc3dvcmQ=

Required Customer's account
credentials

Content-Type application/json Required Content type of the request

Response body:

Response fields

Name Name Description

transactionId String Identifier of transaction. This
parameter should be provided in the
deposit method if the tokenPayment

method returned AUTHORIZED
transaction status. This parameter
also defines in the context of which
transaction Verestro should return
information when executing the
getTransactionDetails method.

HTTP/1.1 200 OK
Content-Type: application/json;charset=UTF-8
Content-Length: 245

{
 "transactionId" : "ee58ef03-d6ed-4a07-8885-d050c439ec6c",
 "amount" : 100,
 "currency" : "PLN",
 "description" : "description",
 "status" : "DEPOSITED",
 "threeDsMode" : "FRICTIONLESS"
}

https://bookstack.verestro.dev/books/token-payment-service/page/onboarding
https://bookstack.verestro.dev/books/token-payment-service/page/integration-with-token-payment-service#bkmrk-deposit
https://bookstack.verestro.dev/books/token-payment-service/page/integration-with-token-payment-service#bkmrk-token-payment
https://bookstack.verestro.dev/books/token-payment-service/page/integration-with-token-payment-service#bkmrk-get-transaction-deta

Response fields

Name Name Description

amount Number Transaction amount in pennies

currency String Transaction currency

description String Transaction description

status String One of the possible transaction
statuses

threeDsMode String ThreeDS process mode which informs
about

getTransactionDetails method cURL example:

Possible errors
This chapter presents all the errors that can be obtained using the Token Payment Service solution.
The chapter lists each of the error statuses with a description, as well as an example JSON body
with a given error.

HTTP Status Error Status Error Message

400 - Bad Request VALIDATION_ERROR Some fields are invalid

400 - Bad Request REFUSED_BY_BANK Transaction has been rejected by the
Acquirer or Issuer

400 - Bad Request LACK_OF_FUNDS Lack of funds

400 - Bad Request TRANSACTION_LIMIT_EXCEEDED Transaction limit exceeded

400 - Bad Request ACQUIRER_ERROR An exception occured on the Acquirer
side

400 - Bad Request TRANSACTION_NOT_FOUND Transaction with provided
transactionId does not exist in
Verestro system

401 - Unauthorized UNAUTHORIZED Provided merchant's credentials are
invalid

422 - Unprocessable entity OPERATION_NOT_PERMITTED Operation is not permitted

$ curl 'https://merchant.upaid.pl/champion/transactions/ee58ef03-d6ed-4a07-8885-d050c439ec6c' -i -u
'login:password' -X GET \
 -H 'Content-Type: application/json'

https://bookstack.verestro.dev/books/token-payment-service/page/integration-with-token-payment-service#bkmrk-deposit
https://bookstack.verestro.dev/books/token-payment-service/page/integration-with-token-payment-service#bkmrk-get-transaction-deta

HTTP Status Error Status Error Message

422 - Unprocessable entity ERROR_WRONG_MID_VALUE Provided merchant ID (MID) is not
configured for this merchant

422 - Unprocessable entity ERROR_CANNOT_DEPOSIT Cannot deposit in case: transaction is
deposited. Transaction is not
AUTHORIZED or amount provided in
deposit is greater than transaction

origin amount (this error can occur
only in deposit method)

422 - Unprocessable entity ERROR_WRONG_TRANSACTION_ID Incorrect transactionId (this error can
occur only in deposit method)

500 - Internal Server Error ERROR_ACQ_EXCEPTION An exception occured on the Acquirer
side

500 - Internal Server Error TRANSACTION_IDEMPOTENCY_ERROR Transaction with provided itemId
 already exists

500 - Internal Server Error INTERNAL_SERVER_ERROR Internal application error

504 - Gateway timeout ACQUIRER_RESPONSE_TIMEOUT The acquirer has not responded in a
specified time

Error examples in JSON format
Response status: HTTP/1.1 400 Bad Request

Response status: HTTP/1.1 400 Bad Request

HTTP/1.1 400 Bad Request
Content-Length: 32
Content-Type: application/json;charset=UTF-8=

{
 "status": "VALIDATION_ERROR",
 "message": "Some fields are invalid",
 "data": [
 {
 "field": "{{field_name_from_request}}",
 "message": "{{message}}"
 }
],
 "traceId": "{{traceId}}"
}

https://bookstack.verestro.dev/books/token-payment-service/page/integration-with-token-payment-service#bkmrk-deposit
https://bookstack.verestro.dev/books/token-payment-service/page/integration-with-token-payment-service#bkmrk-deposit
https://bookstack.verestro.dev/books/token-payment-service/page/integration-with-token-payment-service#bkmrk-deposit

Response status: HTTP/1.1 401 Unauthorized

Response status: HTTP/1.1 422 Unprocessable entity

Response status: HTTP/1.1 500 Internal Server Error

HTTP/1.1 400 Bad Request
Content-Length: 32
Content-Type: application/json;charset=UTF-8=

{
 "transactionId": "{{transactionId}}",
 "status": "REFUSED_BY_BANK",
 "message": "Insufficient funds",
 "traceId": "{{traceId}}"
}

HTTP/1.1 401 Unauthorized
Content-Length: 32
Content-Type: application/json;charset=UTF-8=

{
 "timestamp": "2022-11-30T10:54:32.275+00:00",
 "status": 401,
 "error": "Unauthorized",
 "message": "Unauthorized",
}

HTTP/1.1 422 Unprocessable entity
Content-Length: 32
Content-Type: application/json;charset=UTF-8=

{
 "status": "ERROR_CANNOT_DEPOSIT",
 "message": "ERROR_CANNOT_DEPOSIT",
 "traceId": "{{traceId}}"
}

Response status: HTTP/1.1 504 Gateway Timeout

HTTP/1.1 500 Internal Server Error
Content-Length: 32
Content-Type: application/json;charset=UTF-8=

{
 "status": "INTERNAL_SERVER_ERROR",
 "message": "Internal server error exception",
 "traceId": "{{traceId}}"
}

HTTP/1.1 504 Gateway Timeout
Content-Length: 32
Content-Type: application/json;charset=UTF-8=

{
 "transactionId": "{{transactionId}}",
 "status": "ACQUIRER_RESPONSE_TIMEOUT",
 "message": "ACQUIRER_RESPONSE_TIMEOUT",
 "traceId": "{{traceId}}"
}

