Integration between
Whitelabel Application and
services

Integration with web page

One possible development direction for the Verestro Whitelabel Application is to expand the set of
functionalities by embedding webviews. There are no restrictions on the side of Verestro
technology to embed a web page in a mobile application.

This approach has many advantages over native solutions. If the same content or features are to
be available in both the web and native apps, it allows us to maintain a consistent presentation
layer regardless of the platform. For content that is frequently modified this is the best solution, as
there is no need to go through the entire flow release of mobile applications, and all changes can
be immediately implemented on the production environment, as they are transparent to mobile
applications.

It is possible that a situation may happen when communication is needed between the website
embedded in the application and the mobile application itself during the flow. An example is to
inform the native application that a certain stage of the process has ended, so that if it is
interrupted, the user who wants to continue the process does not open the first screen but the one
on which it ended.

The communication method we recommend is based on a JS event, which can be easily
implemented on the web application side regardless of the technology in which the website was
created, so it will work for websites created in popular frameworks like Angular or React, but also
for many others.

Our mobile solutions have a consistent and universal way of building communication with the web
application to provide the end user with the best possible user experience, often indistinguishable
from native screens.

Events supported by default by Verestro Whitelabel Application

Event Default handling

open Used on part-screen webviews, which are the initialization
of flow.
Dispatched, for example, when the "Get started" button is
pressed or when the focus is detected on the webview

close Used at the end of a flow taking place via webview.
Dispatched, for example, when the "Finish" button is
pressed at the end of the flow or when the last screen in
the navigation is shown.

Below is a code example for use on the web application side of the React framework.

Sample for web application - React

import { Event } from '../types/Global’;

function islOS(): boolean {
return /iPad|iPhone|iPod/.test(navigator.platform);

}

function postTolOSHandler(event: Event, data: string | boolean): void {
window.webkit?.messageHandlers?.[event].postMessage(data);

}

function postToAndroidHandler(event: Event, data: string | boolean): void {
window.Android?.[event](data);

}

export function emitMobileEvent(event: Event, data: string | boolean): void {
if (isl0S()) {
postTolOSHandler(event, data);
return;

}
postToAndroidHandler(event, data);

}

Note that due to architectural differences between Apple iOS and Google Android, two events
should be emitted, each dedicated to the execution platform.

Android always requires a parameter to be passed in the event, iOS allows you to handle a “pure
event” without additional parameters included in the event.

The above code was built so that first the executing device is detected i.e. iOS or Android
recognition and then the correct event is emitted automatically. In a simplified version, you can
always emit two events, one for iOS and the other for Android, as the corresponding application
should only consume its dedicated event.

The general principle is based on the broadcast of an event by the web app and consumption by
the corresponding mobile apps (i0OS + Android native)

irag ol bl RBA-Q@ES4ilbpng

An example of how to use this scheme to support webview closing

imag ol HlRBI @233 pNg

Creating a compatible SDKs
or widgets

The mobile architecture of our systems is modular and multilayered, which enables easy and fast
integration of new functionalities in the form of SDK. The creation of the appropriate SDK can be
handled by Verestro's development team or it can be a customer-provided SDK. It is important that
the requirements in the following subsections are met.

https://bookstack.verestro.dev/uploads/images/gallery/2024-06/image-1719310675477.png
https://bookstack.verestro.dev/uploads/images/gallery/2024-06/image-1719310612339.png

Scenario 1

Client's backend allows the
connection using JWT from Verestro

Verestro JWT

The first scenario involves using a certificate obtained from the Verestro MDC SDK to authenticate
to the client server. This case requires that the servers exchange certificates with each other and
the client server can verify the validity of the token. Verestro systems ensure that the token is used
by a person authorized to do so and that it is that person's token (i.e., the client server does not
need to verify that the user ID=2 who signed up is definitely user ID=2).

https://bookstack.verestro.dev/uploads/images/gallery/2022-06/image-1655192332277.png

Scenario 2

Client's backend allows the
connection using own JWT

iant! Client's JWT
Client's SDK Client's token Client's AP
management

The second possible scenario makes the client server session independent of the JWT Verestro
token. In this case, all communication between Client's SDK -> Client's Server relies on client
security, which is transparent to the SDK operation in the application and should be implemented
inside the SDK so that the session is always available and valid.

Android

Preferred language (at least on the facade) - Kotlin,

Exposed methods that take parameters - they should be wrapped in some model (if more
parameters are added, compatibility will not be broken),

Naming methods - any, well described in documentation,

SDK delivery - endpoint to artifactory,

If SDK communicates with a server - appropriate configuration and a separate endpoint to
connect to the server,

JWT - issued token parameter in SDK configuration, we pass in header.

Minimum iOS version - 10

10S

Preferred language - Swift

Exposed methods that take parameters - they should be wrapped in a model (if more
parameters are added, compatibility will not be broken),

Naming methods - any, well described in the documentation,

Providing SDK - endpoint to be used in SPM,

https://bookstack.verestro.dev/uploads/images/gallery/2022-06/image-1655192349087.png

e Minimum iOS version - 15

Revision #3
Created 12 July 2024 06:11:15 by Wiktor Kowalczyk
Updated 12 July 2024 06:14:35 by Wiktor Kowalczyk

